-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
279 lines (233 loc) · 9.17 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import shutil
import os
import io
from numpy.linalg import svd
from collections import OrderedDict
from copy import deepcopy
from torch.optim.lr_scheduler import _LRScheduler, ReduceLROnPlateau
from config import config
class AverageMeter(object):
"""
Computes and stores the average and
current value.
"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def get_error(output, target, topk=(1,)):
"""Computes the error over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(1 - correct_k.mul_(1. / batch_size))
return res
def move_model_state_dict(state_dict, device):
for k, v in state_dict.items():
state_dict[k] = v.to(device)
return state_dict
def get_weight_config_str():
weight_config = {
'feat_mult': config.feat_mult,
'dataset': config.dataset,
'step': config.train_iters,
'optim': config.optim,
'lr': config.lr,
'lr_min': config.lr_min,
'smoothing': config.smoothing,
'batch_size': config.batch_size,
'valid_batch_size': config.valid_batch_size
}
if config.no_beta:
weight_config['decoder'] = config.baseline_dec_type
weight_config_str = '-'.join(['{}_{}'.format(k, get_formatted_string(v)) for k, v in weight_config.items()])
return weight_config_str
def get_formatted_string(value):
if isinstance(value, float):
if value == 0.:
formatted = '0'
elif value < 1e-2 or value > 1e2:
formatted = '{:.2e}'.format(value)
else:
formatted = '{:.4f}'.format(value)
else:
formatted = str(value)
return formatted
def optim_init(optimizer):
optimizer.state.clear()
def efficiency_loss(alpha):
first_depth = alpha[:, 0].argmax().item()
alpha_softmax = F.softmax(alpha, dim=1)
coef = max(first_depth - alpha.size(0)/2, 0) / (alpha.size(0)/2)
return coef * alpha_softmax[:first_depth, 1].sum()
def decayed_loss_with_alpha(idx, losses, alpha_softmax):
if idx == len(losses)-1:
return losses[-1]
loss = alpha_softmax[idx, 0] * losses[idx]
for i in range(idx+1, len(losses) - 1):
loss += alpha_softmax[idx:i, 1].prod() * alpha_softmax[i, 0] * losses[i]
loss += alpha_softmax[idx:, 1].prod() * losses[-1]
return loss
def move_optim_state_dict(state_dict, device):
sd = deepcopy(state_dict)
for state in sd['state'].values():
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.data.to(device)
return sd
def weights_init(m):
if isinstance(m, nn.BatchNorm1d) or isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
a = 0 if config.nonlin == 'relu' else 0.01
nn.init.kaiming_normal_(m.weight, a=a, nonlinearity='leaky_relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def get_singular_values(module):
s = []
for m in module.modules():
if isinstance(m, nn.Conv2d):
out_channels = m.weight.size(0)
w = m.weight.data.cpu().numpy().reshape(out_channels, -1)
s.append(svd(w, compute_uv=False))
elif isinstance(m, nn.Linear):
w = m.weight.data.cpu().numpy()
s.append(svd(w, compute_uv=False))
return s
def get_correct_sample_indices(forward_fn, x, y):
with torch.no_grad():
out = forward_fn(x)
if isinstance(out, tuple):
out = out[0]
pred = torch.max(out, 1)[1]
correct_idx = (pred == y).nonzero().view(-1)
if correct_idx.numel() == 0:
return None
return correct_idx
def one_hot(y, n_dims):
scatter_dim = len(y.size())
y_tensor = y.view(*y.size(), -1)
zeros = torch.zeros(*y.size(), n_dims).to(y.device)
return zeros.scatter(scatter_dim, y_tensor, 1)
def similarity_matrix(x):
''' Calculate adjusted cosine similarity matrix of size x.size(0) x x.size(0). '''
if x.dim() == 4:
if not config.no_similarity_std and x.size(1) > 3 and x.size(2) > 1:
z = x.view(x.size(0), x.size(1), -1)
x = z.std(dim=2)
else:
x = x.view(x.size(0),-1)
xc = x - x.mean(dim=1).unsqueeze(1)
xn = xc / (1e-8 + torch.sqrt(torch.sum(xc**2, dim=1))).unsqueeze(1)
R = xn.matmul(xn.transpose(1,0)).clamp(-1,1)
return R
def get_pool_layer(channels, dim, target_dim):
'''Resolve average-pooling kernel size in order for flattened dim to match target_dim'''
ks_h, ks_w = 1, 1
dim_out_h, dim_out_w = dim, dim
dim_in_decoder = channels*dim_out_h*dim_out_w
while dim_in_decoder > target_dim and ks_h < dim:
ks_h*=2
dim_out_h = math.ceil(dim / ks_h)
dim_in_decoder = channels*dim_out_h*dim_out_w
if dim_in_decoder > target_dim:
ks_w*=2
dim_out_w = math.ceil(dim / ks_w)
dim_in_decoder = channels*dim_out_h*dim_out_w
if ks_h > 1 or ks_w > 1:
pad_h = (ks_h * (dim_out_h - dim // ks_h)) // 2
pad_w = (ks_w * (dim_out_w - dim // ks_w)) // 2
return nn.AvgPool2d((ks_h, ks_w), padding=(pad_h, pad_w)), dim_in_decoder
else:
return nn.Identity(), dim_in_decoder
def save_checkpoint(state, num_blocks, is_best):
"""
Save a copy of the model so that it can be loaded at a future
date. This function is used when the model is being evaluated
on the test data.
If this model has reached the best validation accuracy thus
far, a seperate file with the suffix `best` is created.
"""
base_dir = os.path.join(config.ckpt_dir, config.dataset)
if not os.path.exists(base_dir):
os.makedirs(base_dir)
filename = config.name + '_{}_ckpt.pth.tar'.format(num_blocks)
ckpt_path = os.path.join(base_dir, filename)
print("[*] Saving model to {}".format(ckpt_path))
torch.save(state, ckpt_path)
if is_best:
filename = config.name + '_{}_model_best.pth.tar'.format(num_blocks)
shutil.copyfile(
ckpt_path, os.path.join(base_dir, filename)
)
def load_checkpoint(model, device, num_blocks, is_best=False):
"""
Load the best copy of a model. This is useful for 2 cases:
- Resuming training with the most recent model checkpoint.
- Loading the best validation model to evaluate on the test data.
Params
------
- best: if set to True, loads the best model. Use this if you want
to evaluate your model on the test data. Else, set to False in
which case the most recent version of the checkpoint is used.
"""
base_dir = os.path.join(config.ckpt_dir, config.dataset)
print("[*] Loading model from {}".format(base_dir))
filename = config.name + '_{}_ckpt.pth.tar'.format(num_blocks)
if is_best:
filename = config.name + '_{}_model_best.pth.tar'.format(num_blocks)
ckpt_path = os.path.join(base_dir, filename)
ckpt = torch.load(ckpt_path)
model.load_state_dict(move_model_state_dict(ckpt, device))
print(
"[*] Loaded checkpoint {}".format(
filename)
)
return
class CosineAnnealingLR(_LRScheduler):
r"""Clipped cosine annealing lr. Return eta_min when last_epoch >= T_max"""
def __init__(self, optimizer, T_max, eta_min=0, last_epoch=-1):
self.T_max = T_max
self.eta_min = eta_min
super(CosineAnnealingLR, self).__init__(optimizer, last_epoch)
def get_lr(self):
if self.last_epoch == 0:
return self.base_lrs
elif self.last_epoch >= self.T_max:
return [self.eta_min for _ in range(len(self.optimizer.param_groups))]
elif (self.last_epoch - 1 - self.T_max) % (2 * self.T_max) == 0:
return [group['lr'] + (base_lr - self.eta_min) *
(1 - math.cos(math.pi / self.T_max)) / 2
for base_lr, group in
zip(self.base_lrs, self.optimizer.param_groups)]
return [(1 + math.cos(math.pi * self.last_epoch / self.T_max)) /
(1 + math.cos(math.pi * (self.last_epoch - 1) / self.T_max)) *
(group['lr'] - self.eta_min) + self.eta_min
for group in self.optimizer.param_groups]
def _get_closed_form_lr(self):
if self.last_epoch >= self.T_max:
return [self.eta_min for _ in range(len(self.optimizer.param_groups))]
else:
return [self.eta_min + (base_lr - self.eta_min) *
(1 + math.cos(math.pi * self.last_epoch / self.T_max)) / 2
for base_lr in self.base_lrs]