-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathchapter_5_productfragmentation-wits-sitcr3.py
553 lines (479 loc) · 21.3 KB
/
chapter_5_productfragmentation-wits-sitcr3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
"""
Chapter 5: Product Fragmentation
================================
Compute Product Fragmentation Dataset with Final and Parts and Components Indicators
Dataset
-------
WITS (UN-COMTRADE) DATASET
Sata Files
----------
chapter_5_productfragmentation-wits-sitcr3.do
"""
from __future__ import division
import os
import gc
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pyeconlab import DynamicProductLevelExportSystem
from dataset_info import CHAPTER_RESULTS
SOURCE_DIR = CHAPTER_RESULTS[5] #-Data is made using stata-#
RESULTS_DIR = CHAPTER_RESULTS[5]
#-Meta Data and Classifications-#
R3toR2 = pd.read_stata(SOURCE_DIR+"un-sitcr3-sitcr2.dta").set_index("sitcr3l5")
pc = pd.read_stata(SOURCE_DIR+"athukorala-pc-sitcr3l5.dta").set_index("sitcr3l5")
lall = pd.read_stata(SOURCE_DIR+"lall-techclassification.dta").set_index("sitcr2l3") #Interface <lall,sitc3,sitcdescription>. Note: This is SITC rev 2 but at the 3 digit level!
cntryreg = pd.read_stata(SOURCE_DIR+"un-countryinfo-regions-development.dta")
# ------------------ #
# ---- ANALYSIS ---- #
# ------------------ #
#-Load Data-#
#-WITS (UN COMTRADE) EXPORT DATA (EXPORTER REPORTS)-#
data = pd.read_stata(SOURCE_DIR+"wits-sitcr3-dataset/"+"wits-sitcr3-export-exporterreports-dataset.dta")
data = data.rename(columns={'eiso3c':'country'})
#-Yr2013 appears incomplete-#
data = data.loc[data.year <= 2012]
#-Locate Manufactured Trade-#
manuf = data.loc[data.sitccat == 'M'].reset_index(drop=True)
#-Analysis-#
#-Total P&C Exports in Total World Export-#
world = data.groupby(["year","pc"]).sum()["export"]
plotdata = world.unstack()
plotdata = plotdata.rename(columns={0:'Other Exports', 1:'Parts and Components'})
plotdata.columns.name = ""
fig = plotdata.plot()
plt.tight_layout()
plt.savefig(RESULTS_DIR+"plots/"+"wits-sitcr3-total_pc_total_exports.png", dpi=400)
plt.clf()
#-Percent P&C-#
plotdata["%"] = plotdata["Parts and Components"] / (plotdata["Parts and Components"] + plotdata["Other Exports"])
fig = plotdata["%"].plot(ylim=0, title="Percent (P&C) in Total World Exports")
plt.tight_layout()
plt.savefig(RESULTS_DIR+"plots/"+"wits-sitcr2-percent_pc_total_exports.png", dpi=400)
plt.clf()
#-Total P&C Exports in Total Manufacturing Exports-#
plotdata = manuf.groupby(["year","pc"]).sum()["export"]
plotdata = plotdata.unstack()
plotdata = plotdata.rename(columns={0:'Final Products (Manufacturing)', 1:'Parts and Components'})
plotdata.columns.name = ""
fig = plotdata.plot()
plt.tight_layout()
plt.savefig(RESULTS_DIR+"plots/"+"wits-sitcr2-total_pc_total_manuf_exports.png", dpi=400)
plt.clf()
#-Percent P&C-#
plotdata["%"] = plotdata["Parts and Components"] / (plotdata["Parts and Components"] + plotdata["Final Products (Manufacturing)"])
fig = plotdata["%"].plot(ylim=0, title="Percent (P&C) in Total Manufacturing Exports")
plt.tight_layout()
plt.savefig(RESULTS_DIR+"plots/"+"wits-sitcr2-percent_pc_total_manuf_exports.png", dpi=400)
plt.clf()
#-Area Analysis-#
#-Total P&C Exports in Manufacturing Exports (by Area)-#
plotdata = manuf.groupby(["areaname","year","pc"]).sum()["export"]
plotdata = plotdata.unstack()
plotdata = plotdata.rename(columns={0:'Final Products', 1:'Parts and Components'})
plotdata.columns.name = ""
fig = plotdata.ix["Asia"].plot(title="Asia")
plt.tight_layout()
plt.savefig(RESULTS_DIR+"plots/"+"wits-sitcr2-total_pc_total_manuf_exports-Asia.png", dpi=400)
plt.clf()
#-Percent of P&C Exports in Manufacturing Export (by Area)-#
plotdata = manuf.groupby(["areaname","year","pc"]).sum()
plotdata["totx"] = plotdata.groupby(level=["areaname", "year"])["export"].transform(np.sum)
plotdata["%x"] = plotdata["export"] / plotdata["totx"]
plotdata = plotdata["%x"].unstack()
plotdata = plotdata.rename(columns={0:'Final Products', 1:'Parts and Components'})
plotdata.columns.name = ""
fig = plotdata.ix["Asia"].plot(title="Asia")
plt.tight_layout()
plt.savefig(RESULTS_DIR+"plots/"+"wits-sitcr2-percent_pc_in_manuf_exports-Asia.png", dpi=400)
plt.clf()
#-Area %share in Manufacturing Trade (P&C)-#
fig2 = plotdata["Parts and Components"].unstack(level="areaname").plot(title="Percent P&C in Total Manufacturing Trade (by Area)")
fig2.legend(loc='center left', bbox_to_anchor=(1, 0.5))
fig2.set_ylabel("Percent")
fig2.set_ylim(bottom=0)
plt.tight_layout()
plt.savefig(RESULTS_DIR+"plots/"+"wits-sitcr2-percent_pc_in_manuf_exports-UNArea.png", dpi=400, bbox_inches="tight")
plt.clf()
#~~Region Analysis~~#
#-Total P&C Exports in Manufacturing Exports (by Region)-#
plotdata = manuf.groupby(["regionname","year","pc"]).sum()["export"]
plotdata = plotdata.unstack()
plotdata = plotdata.rename(columns={0:'Final Products', 1:'Parts and Components'})
plotdata.columns.name = ""
fig = plotdata.ix["Eastern Asia"].plot(title="Total P&C and Manufacturing Export (Eastern Asia)")
plt.tight_layout()
plt.savefig(RESULTS_DIR+"plots/"+"wits-sitcr2-total_pc_tota_manuf_exports-EAsia.png", dpi=400)
plt.clf()
fig = plotdata.ix["South-Eastern Asia"].plot(title="Total P&C and Manufacturing Export (South-Eastern Asia)")
plt.tight_layout()
plt.savefig(RESULTS_DIR+"plots/"+"wits-sitcr2-total_pc_tota_manuf_exports-SEAsia.png", dpi=400)
plt.clf()
#-Region %share in Manufacturing Exports-#
plotdata["%"] = plotdata["Parts and Components"] / (plotdata["Parts and Components"] + plotdata["Final Products"])
fig = plotdata["%"].unstack(level="regionname")[["Eastern Asia", "South-Eastern Asia"]].plot(title="PC % share in Manufacturing Exports (by Region)", ylim=(0,0.5))
plt.tight_layout()
plt.savefig(RESULTS_DIR+"plots/"+"wits-sitcr2-percent_pc_in_manuf_exports-EAsia+SEAsia.png", dpi=400)
plt.clf()
#-Table-#
table = plotdata["%"].unstack(level="regionname")
table.to_excel(RESULTS_DIR+"tables/"+"wits-sitcr2-percent_pc_in_manuf_exports-UNRegions.xlsx")
#~~Country Analysis~~#
#-Total Exports-#
#-Total P&C in Total Exports (By Country)-#
plotdata = data.groupby(["country","year","pc"]).sum()["export"]
plotdata = plotdata.unstack()
plotdata = plotdata.rename(columns={0:'Final Products', 1:'Parts and Components'})
plotdata.columns.name = ""
fig = plotdata.ix["JPN"].plot(title="Total P&C and Total Export (Japan)")
plt.tight_layout()
plt.savefig(RESULTS_DIR+"plots/"+"wits-sitcr2-total_pc_and_total_exports-JPN.png", dpi=400)
plt.clf()
fig = plotdata.ix["CHN"].plot(title="Total P&C and Total Export (China)")
plt.tight_layout()
plt.savefig(RESULTS_DIR+"plots/"+"wits-sitcr2-total_pc_and_total_exports-CHN.png", dpi=400)
plt.clf()
#-Country %share in Total Exports (By Country)-#
plotdata["%"] = plotdata["Parts and Components"] / (plotdata["Parts and Components"] + plotdata["Final Products"])
fig = plotdata["%"].unstack(level="country")[["CHN", "JPN", "KOR"]].plot(title="Total P&C %share of Total Export (Countries)")
fig.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.tight_layout()
plt.savefig(RESULTS_DIR+"plots/"+"wits-sitcr2-percent_pc_in_total_exports-CHN+JPN+TWN+KOR.png", dpi=400, bbox_inches="tight")
plt.clf()
fig = plotdata["%"].unstack(level="country")[["IDN", "MYS", "PHL", "SGP", "THA", "VEN"]].plot(title="Total P&C %share of Total Export (Countries)")
fig.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.tight_layout()
plt.savefig(RESULTS_DIR+"plots/"+"wits-sitcr2-percent_pc_in_total_exports-IDN+MYS+PHL+SGP+THA+VEN.png", dpi=400, bbox_inches="tight")
plt.clf()
#-Table-#
table = plotdata["%"].unstack(level="country").T
table.to_excel(RESULTS_DIR+"tables/"+"wits-sitcr2-percent_pc_in_total_exports-Countries.xlsx")
SELECTION = ["AUS","USA","CHN","JPN","IDN","IND","THA","MYS","PHL","VEN"]
table.ix[SELECTION].to_excel(RESULTS_DIR+"tables/"+"wits-sitcr2-percent_pc_in_total_exports-SelectionCntry.xlsx")
#-Manufacturing Exports Only-#
#-Total P&C Exports in Manufacturing Exports (by Country)-#
plotdata = manuf.groupby(["country","year","pc"]).sum()["export"]
plotdata = plotdata.unstack()
plotdata = plotdata.rename(columns={0:'Final Products', 1:'Parts and Components'})
plotdata.columns.name = ""
fig = plotdata.ix["JPN"].plot(title="Total P&C and Manufacturing Export (Japan)")
plt.tight_layout()
plt.savefig(RESULTS_DIR+"plots/"+"wits-sitcr2-total_pc_and_manuf_exports-JPN.png", dpi=400)
plt.clf()
fig = plotdata.ix["CHN"].plot(title="Total P&C and Manufacturing Export (China)")
plt.tight_layout()
plt.savefig(RESULTS_DIR+"plots/"+"wits-sitcr2-total_pc_and_manuf_exports-CHN.png", dpi=400)
plt.clf()
#-Country %share in Manufacturing Export-#
plotdata["%"] = plotdata["Parts and Components"] / (plotdata["Parts and Components"] + plotdata["Final Products"])
fig = plotdata["%"].unstack(level="country")[["CHN", "JPN", "KOR"]].plot(title="Total P&C %share of Manufacturing Export (Countries)")
fig.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.tight_layout()
plt.savefig(RESULTS_DIR+"plots/"+"wits-sitcr2-percent_pc_in_manuf_exports-CHN+JPN+KOR.png", dpi=400, bbox_inches="tight")
plt.clf()
fig = plotdata["%"].unstack(level="country")[["IDN", "MYS", "PHL", "SGP", "THA", "VEN"]].plot(title="Total P&C %share of Manufacturing Export (Countries)")
fig.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.tight_layout()
plt.savefig(RESULTS_DIR+"plots/"+"wits-sitcr2-percent_pc_in_manuf_exports-IDN+MYS+PHL+SGP+THA+VEN.png", dpi=400, bbox_inches="tight")
plt.clf()
#-Table-#
table = plotdata["%"].unstack(level="country").T
table.to_excel(RESULTS_DIR+"tables/"+"wits-sitcr2-percent_pc_in_manuf_exports-Countries.xlsx")
SELECTION = ["AUS","USA","CHN","JPN","IDN","IND","THA","MYS","PHL","VEN"]
table.ix[SELECTION].to_excel(RESULTS_DIR+"tables/"+"wits-sitcr2-percent_pc_in_manuf_exports-SelectionCntry.xlsx")
#------------#
#-TRADE DATA-#
#------------#
#------------------#
#-Intra-Asia Trade-#
#------------------#
store = pd.HDFStore(RESULTS_DIR+"wits-sitcr3-dataset/wits-sitcr3-trade-1995-2013-yearly.h5") #-Already has Regions Coded-#
for year in xrange(1995,2013+1,2):
print "Processing year %s ..."%year
df = store.get("Y%s"%year)
if year == 1995:
data = df
else:
data = data.append(df)
del df
gc.collect()
data.reset_index(inplace=True)
del data["index"]
store.close()
# for year in xrange(1995,2013+1,1):
# print "Processing year %s ..."%year
# df = pd.read_stata(SOURCE_DIR+"baci-sitcr3-trade-%s.dta"%(year))
# df = df.rename(columns={'sitcr3' : 'productcode'})
# if year == 1995:
# data = df
# else:
# data = data.append(df)
# del df
# gc.collect()
# data.reset_index(inplace=True)
# del data["index"]
# #-Country Region Information-#
# data = data.merge(cntryreg[["iso3c","areaname"]], left_on=["eiso3c"], right_on=["iso3c"], how="inner") #-how="left"
# data.rename(columns={'areaname':'eareaname'})
# del data["iso3c"]
# data = data.merge(cntryreg[["iso3c","areaname"]], left_on=["iiso3c"], right_on=["iso3c"], how="inner") #-how="left"
# data.rename(columns={'areaname':'iareaname'})
# del data["iso3c"]
#-Intra-East Asian Trade-#
easia = data.loc[(data.eregionname == "Eastern Asia")&(data.iregionname == "Eastern Asia")].reset_index()
seasia = data.loc[(data.eregionname == "South-Eastern Asia")&(data.iregionname == "South-Eastern Asia")].reset_index()
asia = easia.append(seasia).reset_index()
del asia["index"]
asia_exp = asia.groupby(["year", "productcode", "eiso3c"], as_index=False).sum()
asia_imp = asia.groupby(["year", "productcode", "iiso3c"], as_index=False).sum()
#-Merge in P&C-#
#-Add Parts and Components (SITCR3)-#
pccodes = set(pc.index)
asia_exp["pc"] = asia_exp["productcode"].apply(lambda x: 1 if x in pccodes else 0)
asia_imp["pc"] = asia_imp["productcode"].apply(lambda x: 1 if x in pccodes else 0)
#-Add ProductCode Levels-#
for level in [4,3,2,1]:
asia_exp["sitcr3l%s"%level] = asia_exp["productcode"].apply(lambda x: x[0:level])
asia_imp["sitcr3l%s"%level] = asia_imp["productcode"].apply(lambda x: x[0:level])
#-Add SITC Basic Categories-#
sitc_groups = { #-'P' = Primary, 'O' = Oil, 'M' = Manufacturing, 'S' = Special
'0' : 'P',
'1' : 'P',
'2' : 'P',
'3' : 'O',
'4' : 'P',
'5' : 'M',
'6' : 'M',
'68': 'P', #Manually Code
'7' : 'M',
'8' : 'M',
'9' : 'S',
}
asia_exp["sitccat"] = asia_exp["sitcr3l1"].apply(lambda x: sitc_groups[x])
asia_exp.loc[asia_exp.sitcr3l2 == "68", "sitccat"] = "P"
asia_imp["sitccat"] = asia_imp["sitcr3l1"].apply(lambda x: sitc_groups[x])
asia_imp.loc[asia_imp.sitcr3l2 == "68", "sitccat"] = "P"
manuf = asia_exp.loc[asia_exp.sitccat == 'M'].reset_index()
del manuf["index"]
#-Intra-Regional Regional Analysis-#
#-Total P&C Exports in Manufacturing Exports-#
plotdata = manuf.groupby(["year","pc"]).sum()["value"]
plotdata = plotdata.unstack()
plotdata = plotdata.rename(columns={0:'Final Products', 1:'Parts and Components'})
plotdata.columns.name = ""
fig = plotdata.plot(title="Intra East Asia + South-East Asia)")
plt.tight_layout()
plt.savefig(RESULTS_DIR+"plots/"+"wits-sitcr2-total_pc_in_manuf_exports-Intra-SAsia+SEAsia.png", dpi=400)
plt.cla()
#-Total P&C Percent of Total Manufacturing Exports-#
plotdata["%"] = plotdata["Parts and Components"] / (plotdata["Parts and Components"] + plotdata["Final Products"])
fig = plotdata["%"].plot(title="PC % share in Manufacturing Exports (Intra East and South-East Asia)", ylim=(0,0.5))
plt.tight_layout()
plt.savefig(RESULTS_DIR+"plots/"+"wits-sitcr2-percent_pc_in_manuf_exports-Intra-SAsia+SEAsia.png", dpi=400)
#~Intra-Regional Country Analysis-#
#-Total P&C Export in Manufacturing Exports-#
manuf = manuf.rename(columns={"eiso3c":"country"})
plotdata = manuf.groupby(["country","year","pc"]).sum()["value"]
plotdata = plotdata.unstack()
plotdata = plotdata.rename(columns={0:'Final Products', 1:'Parts and Components'})
plotdata.columns.name = ""
#-Total P&C Percent of Total Manufacturing Exports-#
plotdata["%"] = plotdata["Parts and Components"] / (plotdata["Parts and Components"] + plotdata["Final Products"])
fig = plotdata["%"].unstack(level="country")[["CHN", "JPN", "TWN", "KOR"]].plot(title="PC % share in Manufacturing Exports (Intra East and South-East Asia)", ylim=(0,0.5))
plt.tight_layout()
plt.savefig(RESULTS_DIR+"plots/"+"wits-sitcr2-percent_pc_in_manuf_exports-Intra-SAsia+SEAsia-CHN+JPN+TWN+KOR.png", dpi=400)
#-Table-#
table = plotdata["%"].unstack(level="country").T
SELECTION = ["CHN","JPN","IDN","IND","THA","MYS","PHL","VEN"]
table.ix[SELECTION].to_excel(RESULTS_DIR+"tables/wits-sitcr2-percent_pc_in_manuf_exports-Intra-SAsia+SEAsia-SelectionCntry.xlsx")
#----------------#
#-Setup a System-#
#----------------#
#-Export Data-#
for year in xrange(1995,2013+1,1):
df = pd.read_stata(SOURCE_DIR+"baci-sitcr3-export-%s.dta"%(year))
df = df.rename(columns={'eiso3c' : 'country', 'sitcr3' : 'productcode', 'value':'export'})
df = df.set_index(["year"])
if year == 1995:
data = df
else:
data = data.append(df)
s = DynamicProductLevelExportSystem()
s.from_df(data)
#-2013 Cross Section-#
xs = s[2000]
xs.rca_matrix(complete_data=True)
xs.mcp_matrix()
xs.proximity_matrix()
xs.compute_pci()
xs.auto_adjust_pci_sign(product_datum=('33400','-ve')) #-Oil is negative, un-complex-#
prox = xs.proximity
pci = xs.pci.to_dict()
#-Parts and Components Product Code Sets-#
allcodes = set(prox.index)
pccodes = set(pc.index)
othercodes = allcodes.difference(pccodes)
#-Tables of Parts and Components Relatedness (Proximity)-#
print prox.unstack().describe()
pc_prox = prox.filter(items=pccodes, axis=0).filter(items=pccodes, axis=1)
print pc_prox.unstack().describe()
other_prox = prox.filter(items=othercodes, axis=0).filter(items=othercodes, axis=1)
print other_prox.unstack().describe()
#-Plot Proximity Matrix Sorted by P&C and Final Goods-#
prox = prox.stack().reset_index()
prox = prox.rename(columns={0:'prox'})
#-P&C-#
prox["pc1"] = prox["productcode1"].apply(lambda x: 1 if x in pccodes else 0)
prox["pc2"] = prox["productcode2"].apply(lambda x: 1 if x in pccodes else 0)
#-PCI-#
prox["pci1"] = prox["productcode1"].apply(lambda x: pci[x])
prox["pci2"] = prox["productcode2"].apply(lambda x: pci[x])
#-Organise Data-#
prox = prox.set_index(["pc1","pci1","productcode1","pc2","pci2","productcode2"])
prox = prox.unstack(level=["pc2","pci2","productcode2"])
prox.columns = prox.columns.droplevel()
prox = prox.sort(axis=1)
#-Proximity Plots-#
from reference.ProductSpace import plot_proximity_simple
prox = prox.applymap(lambda x: 0.6 if x >= 0.6 else x)
fig = plot_proximity_simple(prox)
plt.tight_layout()
plt.savefig(RESULTS_DIR+"plots/"+"wits-sitcr2-proximity-sortby(pc-pci)-yr2000.png", dpi=400)
plt.clf()
#-Plot of Parts and Components-#
fig = plot_proximity_simple(prox.ix[1][1])
plt.tight_layout()
plt.savefig(RESULTS_DIR+"plots/"+"wits-sitcr2-proximity(pc)-sortby(pci)-yr2000.png", dpi=400)
plt.clf()
#-Plot All Other Products-#
fig = plot_proximity_simple(prox.ix[0][0])
plt.tight_layout()
plt.savefig(RESULTS_DIR+"plots/"+"wits-sitcr2-proximity(not-pc)-sortby(pci)-yr2000.png", dpi=400)
plt.clf()
#-Plot P&C Versus Other Products-#
fig = plot_proximity_simple(prox.ix[1][0])
plt.tight_layout()
plt.savefig(RESULTS_DIR+"plots/"+"wits-sitcr2-proximity(pc-vs-not-pc)-sortby(pci)-yr2000.png", dpi=400)
plt.clf()
#--------------#
#--OTHER WORK--#
#--------------#
#-Construct BACI SITCR2 Conversion Using RAW SITCR2 Data as a check against Stata-#
#->2.USE BACI SITCR2 CONVERSION FROM STATA<-#
#-BACI SITCR2-#
for year in xrange(1995,2013+1,1):
df = pd.read_stata(SOURCE_DIR+"sitcr3/"+"baci-sitcr3-export-%s.dta"%(year))
df = df.rename(columns={'eiso3c' : 'country', 'sitcr3' : 'productcode', 'value':'export'})
if year == 1995:
data = df
else:
data = data.append(df)
data.reset_index(inplace=True)
del data["index"]
#-Add ProductCode Levels-#
for level in [4,3,2,1]:
data["sitcr3l%s"%level] = data["productcode"].apply(lambda x: x[0:level])
#-Add SITC Basic Categories-#
sitc_groups = { #-'P' = Primary, 'O' = Oil, 'M' = Manufacturing, 'S' = Special
'0' : 'P',
'1' : 'P',
'2' : 'P',
'3' : 'O',
'4' : 'P',
'5' : 'M',
'6' : 'M',
'68': 'P', #Manually Code
'7' : 'M',
'8' : 'M',
'9' : 'S',
}
data["sitccat"] = data["sitcr3l1"].apply(lambda x: sitc_groups[x])
data.loc[data.sitcr3l2 == "68", "sitccat"] = "P"
#-Add Parts and Components (SITCR3)-#
pccodes = set(pc.index)
data["pc"] = data["productcode"].apply(lambda x: 1 if x in pccodes else 0)
#-SITCR2-#
sitcr3tositcr2 = R3toR2["sitcr2l5"].to_dict()
def concord_sitcr2(x):
try:
return sitcr3tositcr2[x]
except:
if x == "33400": #-Special Case if SITC rev 3 data is concorded from HS-#
return x
else:
return "CHECK"
data["sitcr2l5"] = data["productcode"].apply(lambda x: concord_sitcr2(x))
if len(data[data.sitcr2l5 == "CHECK"]) > 0:
raise ValueError("Issue with Concordance --- need to check!")
data["sitcr2l3"] = data["sitcr2l5"].apply(lambda x: x[0:3])
#-Lall Technology Classification-#
sitcr2l3tolall = lall["lall"].to_dict()
def concord_lall(x):
try:
return sitcr2l3tolall[x]
except:
return "D" #DROP
data["Lall"] = data["sitcr2l3"].apply(lambda x: concord_lall(x))
print data[data.Lall == "D"].sitcr2l3.unique()
# Result: ['351', '883', '892', '896', '941', '961', '971']
# 351 = Electric Current
# 883 = Cinema and Films
# 892 = Printed Matter
# 896 = Works of Art, Collectors and Antiques
# 941 = Zoo Animals
# 961 = Coins
# 971 = Gold
data = data.loc[data.Lall != "D"].reset_index() #Drop Codes Note Captured by Lall Technology Classification
del data["index"]
#-Country Information-#
data = data.merge(cntryreg[["iso3c","regionname", "areaname","moredev","lessdev","leastdev"]], left_on=["country"], right_on=["iso3c"], how="inner") #-how="left"
#Dropped Items: array(['ANT', 'ATF', 'CCK', 'CXR', 'IOT', 'NFK', 'NTZ', 'PCN', 'ROM','TMP', 'UMI', 'YUG', 'ZAR'], dtype=object)
#-Once you drop Lall == "SP" from this data it is the same as the STATA DATASET-#
#-Convert WITS CSV Files to STATA DTA Files-#
import pandas as pd
import glob
SOURCE_DIR = os.path.expanduser("~/work-data/datasets/f46c46a0f79ab9d11ec6c27a27622c10/")
fls = glob.glob(SOURCE_DIR+"export/"+'*_Export.csv')
for fl in fls:
data = pd.read_csv(fl, dtype={'ProductCode':str})
fln = fl.split('.')[0]+'.dta'
data.to_stata(fln)
#- STATA IS MUCH FASTER AT THIS TYPE OF WORK EXCEPT STRINGS -#
##------------------------------------------##
##--Construct WITS Compilation of Datasets--##
##------------------------------------------##
import pandas as pd
import glob
SOURCE_DIR = "/home/matthewmckay/work-data/datasets/f46c46a0f79ab9d11ec6c27a27622c10/"
#-Exporter Reports-#
fls = glob.glob(SOURCE_DIR+"export/"+'*_Export.csv') #Move to exports/*.csv?
print len(fls)
exdata= pd.read_csv(fls[0])
for fl in fls[1:]:
exdata = exdata.append(pd.read_csv(fl))
#-Save to HDF, Stata-# (CSV?)
exdata.to_hdf(SOURCE_DIR+"cache/"+"wits-sitcr3-export.h5", "export")
exdata.to_stata(SOURCE_DIR+"cache/"+"wits-sitcr3-export.dta")
#-ReExport Reports-#
fls = glob.glob(SOURCE_DIR+"reexport/"+"*_ReExport.csv") #Move to exports/*.csv?
print len(fls)
exdata= pd.read_csv(fls[0])
for fl in fls[1:]:
exdata = exdata.append(pd.read_csv(fl))
#-Save to HDF, Stata-# (CSV?)
exdata.to_hdf(SOURCE_DIR+"cache/"+"wits-sitsr3-reexports.h5", "export")
exdata.to_stata(SOURCE_DIR+"cache/"+"wits-sitcr3-reexports.dta")
#---------------------------#
#-WITS UN COMTRADE ANALYSIS-#
#---------------------------#
SOURCE_WITS = "/home/matthewmckay/work-temp-local/"
trade = pd.read_stata(SOURCE_WITS+"wits-sitcr3-export.dta")
trade = pd.read_csv(SOURCE_WITS+"wits-sitcr3-export.csv")
trade = trade.rename(columns={'reporteriso3':'eiso3c', 'partneriso3':'iiso3c', 'tradevalue':'value'})
exp = trade.groupby(["eiso3c", "year", "productcode"]).sum()["value"].reset_index()
exp = exp.rename(columns={'eiso3c':'country'})
exp.name = "export"
#imp = trade.groupby(["iiso3c", "year", "productcode"]).sum()["value"]
#imp = imp.rename(columns={'iiso3c':'country'})
#del trade
#gc.collect()