-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlaplace_temporal_net.py
384 lines (344 loc) · 17.4 KB
/
laplace_temporal_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
from attention_models import VideoModelBuilder
from pre_process import tf, Gaussian, Batch_Norm, get_temporal_kernel,spatial_gradients
from dataset import Dataset, Dataloader
from tensorboardX import SummaryWriter
import numpy as np
import pickle
import pandas as pd
DEPTH_CONFIG = {
10: (1, 1, 1, 1),
16: (2, 2, 2, 1),
18: (2, 2, 2, 2),
26: (2, 3, 4, 3),
34: (3, 4, 6, 3),
}
def Laplace_Conv(inputs,in_channel,out_channel,ksize,name='Laplace_conv'):
_kernel = get_temporal_kernel(ksize, in_channel, out_channel)
kernel = tf.get_variable(name=name + str(ksize), shape=(ksize, 1, 1, in_channel, out_channel), dtype=tf.float32,
initializer=tf.constant_initializer(_kernel))
return tf.nn.conv3d(inputs, kernel, (1, 1, 1, 1, 1), padding='SAME')
def gradients_xy(inputs,in_channel=1,mode='roberts'):
rob_y,rob_x = spatial_gradients(in_channel=in_channel,mode=mode)
#rob_yx = tf.concat([rob_y,rob_x], axis=-1)
grident_y = tf.nn.conv3d(inputs,rob_y,strides=(1, 1, 1, 1, 1), padding='SAME',dilations=(1,1,1,1,1))
grident_x = tf.nn.conv3d(inputs,rob_x,strides=(1, 1, 1, 1, 1), padding='SAME',dilations=(1,1,1,1,1))
return grident_y,grident_x
def create_r3d(
data,
num_labels,
num_input_channels=3,
label=None,
is_test=0,
logits=0,
no_bias=1,
final_spatial_kernel=7,
final_temporal_kernel=1,
model_depth=18,
is_decomposed=False,
spatial_bn_mom=0.9,
):
data = Batch_Norm(data,'norm')
net = tf.identity(data, name='input_data')
source = "source_node"
# conv1 + maxpool
if not is_decomposed:
net = tf.layers.conv3d(net,
filters=64,
kernel_size=[3, 7, 7],
strides=[1, 2, 2],
padding='same',
use_bias=not no_bias,
name='conv1')
else:
'''
data = Gaussian(data, in_channels=1,dimensions=2, name='gaussian_filter')
manual_features1 = Laplace_Conv(data, ksize=3, in_channel=1, out_channel=1, name='Lp_conv_')
manual_features2 = Laplace_Conv(data, ksize=5, in_channel=1, out_channel=1, name='Lp_conv_')
manual_features3 = Laplace_Conv(data, ksize=7, in_channel=1, out_channel=1, name='Lp_conv_')
g_y,g_x = gradients_xy(data,in_channel=1)
net = tf.concat([net,manual_features1,manual_features2,manual_features3,g_y,g_x], axis=-1)
'''
#handCraft = [manual_features1,manual_features2,manual_features3,g_y,g_x]
#squeezed = lambda ten:tf.squeeze(ten, axis=-1)
#stacking_on_temp = [squeezed(f) for f in handCraft]
#NHWC = lambda ten:tf.transpose(ten,(0,2,3,1))
#groups = [NHWC(f) for f in stacking_on_temp]
#for g in range(len(stacking_on_temp)):
# pass
net = tf.layers.conv3d(net,
filters=45,
kernel_size=[1, 7, 7],
strides=[1, 2, 2],
padding='same',
use_bias=not no_bias,
name='conv1_middle')
net = tf.layers.batch_normalization(net, training=not is_test,
momentum=spatial_bn_mom,
epsilon=0.001,
center=True,
scale=True,
name='conv1_middle_spatbn_relu')
net = tf.nn.relu(net, name='conv1_middle_activ_relu')
net = tf.layers.conv3d(net,
filters=64,
kernel_size=[3, 1, 1],
strides=[1, 1, 1],
padding='same',
use_bias=not no_bias,
kernel_initializer=tf.constant_initializer(get_temporal_kernel(3,45,64)),
name='conv1')
net = tf.layers.batch_normalization(net, training=not is_test,
momentum=spatial_bn_mom,
epsilon=0.001,
center=True,
scale=True,
name='conv1_spatbn_relu')
net = tf.nn.relu(net, name='conv1_spatbn_activ')
tf.add_to_collection(source, net)
(n1, n2, n3, n4) = DEPTH_CONFIG[model_depth]
# Residual blocks...
builder = VideoModelBuilder(use_bias=not no_bias,
is_test=is_test,
spatial_bn_mom=spatial_bn_mom)
# conv_2x
for _ in range(n1):
net = builder.add_simple_block(net, 64, is_decomposed=is_decomposed)
tf.add_to_collection(source, net)
# conv_3x
net = builder.add_simple_block(
net, 128, down_sampling=True, is_decomposed=is_decomposed)
# net = builder.GPA(net,mid_channels=64,index=0,v_nodes=128,reduce_factor=9)
tf.add_to_collection(source, net)
for _ in range(n2 - 1):
net = builder.add_simple_block(net, 128, is_decomposed=is_decomposed)
tf.add_to_collection(source, net)
# conv_4x
net = builder.add_simple_block(
net, 256, down_sampling=True, is_decomposed=is_decomposed)
# net = builder.GPA(net, mid_channels=64, index=0, v_nodes=64, reduce_factor=7)
tf.add_to_collection(source, net)
for _ in range(n3 - 1):
net = builder.add_simple_block(net, 256, is_decomposed=is_decomposed)
tf.add_to_collection(source, net)
# conv_5x
net = builder.add_simple_block(
net, 512, down_sampling=True, is_decomposed=is_decomposed)
tf.add_to_collection(source, net)
for _ in range(n4 - 1):
net = builder.add_simple_block(net, 512, is_decomposed=is_decomposed)
# Final layers
final_avg = tf.layers.average_pooling3d(net,
pool_size=[
final_temporal_kernel,
final_spatial_kernel,
final_spatial_kernel],
strides=[1, 1, 1],
name='final_avg')
tf.add_to_collection(source, final_avg)
net = tf.layers.flatten(final_avg, name='flatten')
net = tf.layers.dropout(net, rate=0.4,name='dropout')
last_out = tf.layers.dense(net, num_labels, use_bias=True, name='last_out_L{}'.format(num_labels))
tf.add_to_collection(source, last_out)
if logits:
# For features extraction, we return logits
return last_out
# If we create model for training, use softmax-with-loss
if (label is not None):
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=last_out, labels=label), axis=0)
return (last_out, loss)
else:
# For inference, we just return softmax
softmax = tf.nn.softmax(last_out, name='softmax')
return softmax
FLAGS = tf.flags.FLAGS
tf.flags.DEFINE_integer('batch_size', 11, 'batch_size to specify the input_placeholder')
tf.flags.DEFINE_boolean('checkpoint', True, "is there snapshot to load to continue training")
tf.flags.DEFINE_boolean('pretrained', False, 'use pretrained models for hot starting')
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
_SAMPLE_VIDEO_FRAMES = 16
_IMAGE_SIZE = 112
NUM_CLASS = 101
_CHECKPOINT_PATHS = {
'pretrained_model': 'pretrained-models/r3d-18/resnet-18-l16.ckpt',
'snapshots': 'saved_models/model.ckpt',
'logs_train': './logs/train',
'logs_val': './logs/validate',
}
is_checkpoint = FLAGS.checkpoint
batch_size = FLAGS.batch_size
use_pretrained = FLAGS.pretrained
train_set = Dataset.DataSet(clip_length=_SAMPLE_VIDEO_FRAMES,
sample_step=2,
data_root='/home/pr606/Pictures/ucf_images',
annotation_path='/home/pr606/Pictures/ucf101_json_file/ucf101_01.json',
spatial_transform=None,
mode='train')
validate_set = Dataset.DataSet(clip_length=_SAMPLE_VIDEO_FRAMES,
sample_step=2,
data_root='/home/pr606/Pictures/ucf_images',
annotation_path='/home/pr606/Pictures/ucf101_json_file/ucf101_01.json',
spatial_transform=None,
mode='validation')
train_generator = Dataloader.DataGenerator(train_set, batch_size=batch_size)
validate_generator = Dataloader.DataGenerator(validate_set, batch_size=batch_size)
num_train = train_generator.__len__()
num_validate = validate_generator.__len__()
print("training data num is %d" % num_train) # 733
print("validation data num is %d" % num_validate) # 291
graph = tf.get_default_graph()
with graph.as_default():
data = tf.placeholder(shape=(None, _SAMPLE_VIDEO_FRAMES, _IMAGE_SIZE, _IMAGE_SIZE, 3), dtype=tf.float32)
label = tf.placeholder(shape=(None, NUM_CLASS), dtype=tf.int32)
lab = tf.stop_gradient(label, name='disallow_grad')
result = create_r3d(
data=data,
model_depth=18,
num_labels=NUM_CLASS,
num_input_channels=1,
is_decomposed=False,
no_bias=1,
logits=1,
is_test=0,
spatial_bn_mom=0.9,
final_temporal_kernel=2,
)
global_step = tf.Variable(name='global_step', initial_value=0, trainable=False)
# global_step = tf.get_variable("global_step", shape=(),trainable=False,initializer=tf.constant_initializer(0), dtype=tf.int64)
variable_map = {}
regular_map = {}
extra_map = {}
# Note: key of variable_map should be specific enough to match the unique variable
i = 0
for var in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES):
print(var.name, var.shape,i+1)
i += 1
if 'global_step' in var.name:
continue
elif 'L101' in var.name:
extra_map[var.name.replace(":0", '')] = var
continue
elif "GPA" in var.name:
extra_map[var.name.replace(":0", '')] = var
continue
elif 'kernel:0' in var.name:
regular_map[var.name.replace(":0", '')] = var
continue
else:
variable_map[var.name.replace(":0", '')] = var
# rgb_loader = tf.train.Saver(var_list=dict(variable_map, **regular_map), reshape=True)
rgb_resaver = tf.train.Saver(var_list=dict(variable_map, **regular_map, **extra_map), reshape=True)
'''
config = tf.ConfigProto(allow_soft_placement=True)
with tf.Session(config=config) as sess:
global_init = tf.global_variables_initializer()
sess.run(global_init)
rgb_loader.restore(sess, _CHECKPOINT_PATHS['pretrained_model'])
rgb_resaver.save(sess, _CHECKPOINT_PATHS['snapshots'])
'''
pass
"""
with open('/home/pr606/YUAN/torch_project/pklfiles/resnet3d_34_kinetics.pkl', 'rb') as fopen:
blobs = pickle.load(fopen, encoding='latin1')
data = pd.read_csv('/home/pr606/YUAN/torch_project/map.csv',header=None,delimiter=';')
new_tensor = data[0].values
orignal_tensor = data[1].values
shapes = data[2].values
with tf.Session() as sess:
global_init = tf.global_variables_initializer()
sess.run(global_init)
i = 1
for var in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES):
if var.name in new_tensor:
id = np.argwhere(new_tensor==var.name)[0,0]
para = blobs[orignal_tensor[id]]
if len(eval(shapes[id]))==5:
para = para.transpose(2,3,4,1,0)
elif len(eval(shapes[id]))==1:
pass
elif len(eval(shapes[id]))==2:
pass
else:
pass
sess.run(tf.assign(var, para))
print(i)
i +=1
#rgb_loader.restore(sess, _CHECKPOINT_PATHS['pretrained_model'])
#rgb_resaver.save(sess, _CHECKPOINT_PATHS['snapshots'])
rgb_resaver.save(sess, '/home/pr606/YUAN/history/tf-R2plus1D/pretrained-models/r3d-34/model.ckpt')
"""
top1_prediction = tf.nn.in_top_k(result, tf.argmax(lab, 1), 1)
top5_prediction = tf.nn.in_top_k(result, tf.argmax(lab, 1), 5)
acc_top1 = tf.reduce_mean(tf.cast(top1_prediction, tf.float32))
acc_top5 = tf.reduce_mean(tf.cast(top5_prediction, tf.float32))
weight_deacy_loss = tf.reduce_mean([0.005*tf.nn.l2_loss(var) for var in list(regular_map.values())])
# weight_deacy_loss = 0.0
# entropy_loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=result, labels=label), axis=0)
entropy_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=result, labels=lab), axis=0)
loss = entropy_loss + weight_deacy_loss
# learning_rate = tf.train.exponential_decay(learning_rate=0.005, global_step=global_step, decay_steps=1200,
# decay_rate=0.98)
init_lr_rate = 0.1
learning_rate = tf.Variable(name='learn_rate', initial_value=init_lr_rate, dtype=tf.float32, trainable=False)
opt = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
# opt = tf.train.AdamOptimizer(5e-3)
# train_step = opt.minimize(loss, global_step=global_step)
grads_var = opt.compute_gradients(loss)
train_step = opt.apply_gradients(grads_var, global_step=global_step)
with tf.name_scope("summaries_train_and_validation"):
tf.summary.scalar("accuracy_top1", acc_top1)
tf.summary.scalar("accuracy_top5", acc_top5)
tf.summary.scalar("entropy_loss", loss)
update_ops = tf.group(*tf.get_collection(tf.GraphKeys.UPDATE_OPS))
with tf.control_dependencies([train_step, update_ops]):
train_op = tf.no_op(name='train')
merge1 = tf.summary.merge(tf.get_collection(tf.GraphKeys.SUMMARIES, scope="summaries_train_and_validation"))
train_writer = tf.summary.FileWriter(_CHECKPOINT_PATHS["logs_train"], graph)
validate_writer = tf.summary.FileWriter(_CHECKPOINT_PATHS["logs_val"], graph)
global_init = tf.global_variables_initializer()
config = tf.ConfigProto(allow_soft_placement=True)
#config.gpu_options.allow_growth=True
config.gpu_options.per_process_gpu_memory_fraction = 0.85
with tf.Session(config=config) as sess:
sess.run(global_init)
feed_dict = {}
if is_checkpoint:
rgb_resaver.restore(sess, _CHECKPOINT_PATHS['snapshots'])
tf.logging.info('RGB checkpoint restored')
'''according to the value of global_step of saved graph if necessary:sess.run(tf.assign(global_step, 500))'''
sess.run(tf.assign(global_step, 22543))
validation_steps = 7800
epoch = 26
while epoch <= 33:
if epoch%16 == 0 and epoch != 0:
init_lr_rate = init_lr_rate/10
sess.run(tf.assign(learning_rate, init_lr_rate))
for i, (datas, labells) in enumerate(train_generator):
feed_dict[data] = datas #[:,:,:,:,np.newaxis]
feed_dict[label] = labells
_, Entropyloss, top1, top5, summaries = sess.run([train_op, loss, acc_top1, acc_top5, merge1],
feed_dict=feed_dict)
step = global_step.eval()
train_writer.add_summary(summaries, step)
print('steps/epochs:{}/{}===> train_loss: {:.6f}, acc_top1: {:.4f}, acc_top5: {:.4f}'
.format(step, epoch, Entropyloss, top1, top5))
if i >= num_train - 1:
break
""""""
k = 0
for j, (datas, labells) in enumerate(validate_generator):
feed_dict[data] = datas #[:,:,:,:,np.newaxis]
feed_dict[label] = labells
_Entropyloss, _top1, _top5, summaries = sess.run([loss, acc_top1, acc_top5, merge1],
feed_dict=feed_dict)
k += 1
validation_steps +=1
print("steps/epochs:{}/{}===>validate_loss:{:.6f},acc_top1:{:.4f},acc_top5: {:.4f}"
.format(k, epoch, _Entropyloss, _top1, _top5))
validate_writer.add_summary(summaries, validation_steps)
if j >= num_validate - 1 or j >= 300:
break
epoch += 1
rgb_resaver.save(sess, _CHECKPOINT_PATHS['snapshots'])
train_writer.close()
validate_writer.close()