forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathActivationLeakyReluKernel.cu
62 lines (53 loc) · 1.77 KB
/
ActivationLeakyReluKernel.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#define TORCH_ASSERT_NO_OPERATORS
#define _USE_MATH_DEFINES
#include <ATen/native/Activation.h>
#include <cmath>
#include <thrust/tuple.h>
#include <ATen/AccumulateType.h>
#include <ATen/Dispatch.h>
#include <ATen/core/TensorBase.h>
#include <c10/core/Scalar.h>
#include <c10/cuda/CUDAMathCompat.h>
#include <ATen/cuda/ApplyGridUtils.cuh>
#include <ATen/cuda/detail/OffsetCalculator.cuh>
#include <ATen/native/cuda/Loops.cuh>
namespace at::native {
namespace {
void leaky_relu_kernel(TensorIteratorBase& iter, const Scalar& negval_) {
AT_DISPATCH_FLOATING_TYPES_AND2(
at::ScalarType::Half,
at::ScalarType::BFloat16,
iter.dtype(),
"leaky_relu_cuda",
[&]() {
using opmath_t = at::opmath_type<scalar_t>;
auto negval = negval_.to<opmath_t>();
gpu_kernel(iter, [negval] GPU_LAMBDA(scalar_t a) -> scalar_t {
opmath_t aop = static_cast<opmath_t>(a);
return aop > opmath_t(0) ? aop : aop * negval;
});
});
}
void leaky_relu_backward_kernel(
TensorIteratorBase& iter,
const Scalar& negval_) {
AT_DISPATCH_FLOATING_TYPES_AND2(
at::ScalarType::Half,
at::ScalarType::BFloat16,
iter.dtype(),
"leaky_relu_backward_cuda",
[&]() {
using opmath_t = at::opmath_type<scalar_t>;
auto negval = negval_.to<opmath_t>();
gpu_kernel(
iter, [negval] GPU_LAMBDA(scalar_t a, scalar_t b) -> scalar_t {
opmath_t aop = static_cast<opmath_t>(a);
opmath_t bop = static_cast<opmath_t>(b);
return aop > opmath_t(0) ? bop : bop * negval;
});
});
}
} // namespace
REGISTER_DISPATCH(leaky_relu_stub, &leaky_relu_kernel)
REGISTER_DISPATCH(leaky_relu_backward_stub, &leaky_relu_backward_kernel)
} // namespace at::native