forked from NVIDIA/sentiment-discovery
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetric_utils.py
93 lines (82 loc) · 3.16 KB
/
metric_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import torch
import itertools
# At pain of messing up a good thing, also collect standard deviation (total) -- divided by total items for average
def update_info_dict(info_dict, labels, preds, threshold=0.5, std=None):
preds = (torch.tensor(preds) > threshold).long()
labels = (torch.tensor(labels) > threshold).long()
# For backward compatibility -- if no std, assume it's zero -- and put it on CUDA if needed
if std is not None:
info_dict['std'] += torch.sum(torch.tensor(std)).float()
else:
info_dict['std'] += torch.sum((preds == 1) & (preds == 0)).float()
info_dict['tp'] += torch.sum((preds == 1) & (labels == 1)).float()
info_dict['tn'] += torch.sum((preds == 0) & (labels == 0)).float()
info_dict['fp'] += torch.sum((preds == 1) & (labels == 0)).float()
info_dict['fn'] += torch.sum((preds == 0) & (labels == 1)).float()
return info_dict
# Mis-nomer -- returns standard deviation per class.
def get_variance(tp, tn, fp, fn, std):
total = tp + tn + fp + fn
return std / total
# TODO: Also return variance per class (in multihead sense) as a metric
def get_metric(infos, metric=None, micro=False):
"""Essentially a case-switch for getting a metric"""
metrics = {
'acc' : get_accuracy,
'jacc' : get_jaccard_index,
'f1' : get_f1,
'mcc' : get_mcc,
'recall': get_recall,
'precision': get_precision,
'var' : get_variance
}
tp = tn = fp = fn = std = 0
if isinstance(infos, dict):
infos = [infos]
metric = metrics[infos[0].get('metric') or metric]
micro = infos[0].get('micro') or micro
stats = ['tp', 'tn', 'fp', 'fn', 'std']
if micro:
# micro averaging computes the metric after aggregating
# all of the parameters from sets being averaged
for info in infos:
tp += info['tp']
tn += info['tn']
fp += info['fp']
fn += info['fn']
std += info['std']
return metric(tp, tn, fp, fn, std)
else:
# macro averaging computes the metric on each set
# and averages the metrics afterward
individual_metrics = []
for info in infos:
individual_metrics.append(metric(*[info[s].item() for s in stats]))
return sum(individual_metrics) / len(individual_metrics)
# Metrics as functions of true positive, true negative,
# false positive, false negative, standard deviation
def get_precision(tp, tn, fp, fn, std):
if tp == 0:
return 0
return tp / (tp + fp)
def get_recall(tp, tn, fp, fn, std):
if tp == 0:
return 0
return tp / (tp + fn)
def get_jaccard_index(tp, tn, fp, fn, std):
if tp == 0:
return 0
return (tp) / (tp + fp + fn)
def get_accuracy(tp, tn, fp, fn, std):
return (tp + tn) / (tp + tn + fp + fn)
def get_f1(tp, tn, fp, fn, std):
if tp == 0:
return 0
return 2.0 * tp / (2 * tp + fp + fn)
def get_mcc(tp, tn, fp, fn, std):
total = (tp + tn + fp + fn)
for v in tp, tn, fp, fn:
v /= total
denom = ((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn)) ** 0.5
denom = denom if denom > 1e-8 else 1
return (tp * tn - fp * fn) / denom