-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluator.py
151 lines (95 loc) · 3.97 KB
/
evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import torch
class SimpleEvaluator:
def __init__(self):
self.reset()
def reset(self):
print("Resetting Evaluator")
self.mious = []
def calculate_miou(self, seg_bev_e, seg_bev_g, valid_bev_g):
seg_bev_e_round = torch.sigmoid(seg_bev_e).round()
intersection = (seg_bev_e_round*seg_bev_g*valid_bev_g).sum(dim=[1,2])
union = ((seg_bev_e_round+seg_bev_g)*valid_bev_g).clamp(0,1).sum(dim=[1,2])
iou = (intersection/(1e-4 + union)).mean()
# batch mean
self.mious.append(iou.item())
def update(self, pred, gt, valid=None):
self.calculate_miou(pred, gt, valid)
last_miou = self.mious[-1]
results = self.get_results(reset=False)
results['last_mIoU'] = last_miou
return results
def get_results(self, reset=True):
miou = sum(self.mious) / len(self.mious)
if reset:
self.reset()
return {'mIoU' : miou}
class Evaluator:
def __init__(self):
self.reset()
def reset(self):
print("Resetting Evaluator")
self.mious = []
def calculate_miou(self, pred, gt, valid):
pred_round = (pred > 0.5).float()
intersection = (pred_round*gt*valid).sum(dim=[1,2])
union = ((pred_round+gt)*valid).clamp(0,1).sum(dim=[1,2])
iou = (intersection/(1e-4 + union)).mean()
# batch mean
self.mious.append(iou.item())
def update(self, pred, gt, valid=None):
self.calculate_miou(pred, gt, valid)
last_miou = self.mious[-1]
results = self.get_results(reset=False)
results['last_mIoU'] = last_miou
return results
def get_results(self, reset=True):
miou = sum(self.mious) / len(self.mious)
if reset:
self.reset()
return {'mIoU' : miou}
# class Evaluator:
# def __init__(self):
# self.thresholds = [0.5, 0.9, 0.95, 0.99, 0.999]
# self.reset()
# def reset(self):
# print("Resetting Evaluator")
# #self.mious = []
# for threshold in self.thresholds:
# setattr(self, f'mious_{threshold}', [])
# def calculate_miou(self, pred, gt, valid):
# for threshold in self.thresholds:
# pred_round = (pred > threshold).float()
# intersection = (pred_round*gt*valid).sum(dim=[1,2])
# union = ((pred_round+gt)*valid).clamp(0,1).sum(dim=[1,2])
# iou = (intersection/(1e-4 + union)).mean()
# # batch mean
# getattr(self, f'mious_{threshold}').append(iou.item())
# # pred_round = (pred > 0.5).float()
# # if valid is None:
# # valid = torch.ones_like(gt)
# # intersection = (pred_round*gt*valid).sum(dim=[1,2])
# # union = ((pred_round+gt)*valid).clamp(0,1).sum(dim=[1,2])
# # iou = (intersection/(1e-4 + union)).mean()
# # # batch mean
# # self.mious.append(iou.item())
# def update(self, pred, gt, valid=None):
# self.calculate_miou(pred, gt, valid)
# results_ = {}
# for threshold in self.thresholds:
# last_miou = getattr(self, f'mious_{threshold}')[-1]
# results_[f'last_mIoU_{threshold}'] = last_miou
# results = self.get_results(reset=False)
# results.update(results_)
# # last_miou = self.mious[-1]
# # results = self.get_results(reset=False)
# # results['last_mIoU'] = last_miou
# return results
# def get_results(self, reset=True):
# results = {}
# for threshold in self.thresholds:
# miou = sum(getattr(self, f'mious_{threshold}')) / len(getattr(self, f'mious_{threshold}'))
# results[f'mIoU_{threshold}'] = miou
# #miou = sum(self.mious) / len(self.mious)
# if reset:
# self.reset()
# return results