-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathscript.js
202 lines (157 loc) · 7.17 KB
/
script.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
// Imports
import { fdc_ids_as_array } from "./constants.js";
import { getFoodData, get_all_food_data_from_supabase, showCorrectButtons } from "./get_data.js";
import { uuidv4 } from "./utils.js"
// Loading data
console.log(`Loaded data for following FDC IDs: ${fdc_ids_as_array}`);
// Check to see if TF.js is available
console.log(`Loaded TensorFlow.js - version: ${tf.version.tfjs}`);
// Image uploading
const fileInput = document.getElementById("file-input");
const image = document.getElementById("image");
const uploadButton = document.getElementById("upload-button");
// Var creation
var uuid;
// Get all food data in one hit from Supabase and save it to a constant
const data = await get_all_food_data_from_supabase();
console.log("Logging data:")
console.log(data);
// Function to get image
function getImage() {
// Throw error if file not found
if (!fileInput.files[0]) throw new Error("Image not found");
const file = fileInput.files[0];
// Hide thank you message (if it's on show)
var thankYouMessage = document.getElementById("thank_you_message")
thankYouMessage.style.display = "none";
// Get the data url from the image
const reader = new FileReader();
// When reader is ready display image
reader.onload = function (event) {
// Get data URL
const dataUrl = event.target.result;
// Create image object
const imageElement = new Image();
imageElement.src = dataUrl;
// Create UUID for image instance
uuid = uuidv4();
console.log(`UUID: ${uuid}`);
// When image object loaded
imageElement.onload = function () {
// Display image
image.setAttribute("src", this.src);
// Log image parameters
const currImage = tf.browser.fromPixels(imageElement);
// Start timer
var startTime = performance.now()
// Classify image uploaded - 1st: to food/not food, 2nd: what food is it?
// If the following outputs True, run with the food prediction,
// if not, post a message saying no food found, please try another.
if (foodNotFood(foodNotFoodModel, currImage)) {
classifyImage(foodVisionModel, currImage);
} else {
// Update HTML to reflect no food
predicted_class.textContent = "No food found, please try another image."
protein_amount.textContent = ""
carbohydrate_amount.textContent = ""
fat_amount.textContent = ""
}
// Finish timer and output time of classification
var endTime = performance.now()
document.getElementById("time_taken").textContent = `${((endTime - startTime) / 1000).toFixed(4)} seconds`
};
document.body.classList.add("image-loaded");
};
// Get data url
reader.readAsDataURL(file);
}
// Add listener to see if someone uploads an image
fileInput.addEventListener("change", getImage);
uploadButton.addEventListener("click", () => fileInput.click());
// Setup the model(s) code
let foodVisionModel; // This is in global scope
let foodNotFoodModel;
const foodVisionModelStringPath = "models/2022-01-16-nutrify_model_100_foods_manually_cleaned_10_classes_foods_v1.tflite"
const foodNotFoodModelStringPath = "models/2022-03-18_food_not_food_model_efficientnet_lite0_v1.tflite"
const loadModel = async () => {
// Load foodVisionModel (predicts what food is in an image)
// and foodNotFoodModel (predicts whether their is food in an image or not)
try {
const foodVisionTFLiteModel = await tflite.loadTFLiteModel(
foodVisionModelStringPath
);
const foodNotFoodTFLiteModel = await tflite.loadTFLiteModel(
foodNotFoodModelStringPath
);
// Set models to global scope
foodVisionModel = foodVisionTFLiteModel; // assigning it to the global scope model as tfliteModel can only be used within this scope
console.log(`Loaded model: ${foodVisionModelStringPath}`)
foodNotFoodModel = foodNotFoodTFLiteModel
console.log(`Loaded model: ${foodNotFoodModelStringPath}`)
} catch (error) {
console.log(error);
}
};
// Load model and data
loadModel();
// Function to classify image
function classifyImage(model, image) {
// Preprocess image
image = tf.image.resizeBilinear(image, [240, 240]); // image size needs to be same as model inputs - EffNetB1 takes 240x240
image = tf.expandDims(image);
// Log image and model if needed
// console.log(image);
// console.log(model);
// console.log(tflite.getDTypeFromTFLiteType("uint8")); // Gives int32 as output thus we cast int32 in below line
console.log("Converting image to different datatype...");
image = tf.cast(image, "int32"); // Model requires uint8
console.log("Model about to predict what kind of food it is...");
const output = model.predict(image);
const output_values = tf.softmax(output.arraySync()[0]);
console.log("Output of model:");
console.log(output.arraySync()[0]); // arraySync() Returns an array to use
console.log("After calling softmax on the output:");
console.log(output_values.arraySync());
// Update HTML
const predicted_class_string = fdc_ids_as_array[output_values.argMax().arraySync()];
predicted_class.textContent = predicted_class_string;
// predicted_prob.textContent = output_values.max().arraySync() * 100 + "%";
// Get data from Supabase and update HTML
getFoodData(predicted_class_string, data);
// Show "is this correct?" buttons
showCorrectButtons(uuid);
}
// Function to classify whether the image is of food or not
function foodNotFood(model, image) {
// Preprocess image
image = tf.image.resizeBilinear(image, [224, 224]); // image size needs to be same as model inputs - EffNetB0 takes 224x224
image = tf.expandDims(image);
// console.log(tflite.getDTypeFromTFLiteType("uint8")); // Gives int32 as output thus we cast int32 in below line
console.log("Converting image to different datatype...");
image = tf.cast(image, "int32"); // Model requires uint8
console.log("Model predicting food/not food...");
// Make prediction on image
const output = model.predict(image);
// Calculate various values
const output_values = tf.softmax(output.arraySync()[0]);
const output_max = tf.max(output.arraySync()[0]);
console.log("Output of foodNotFood model:");
console.log(output.arraySync()[0]); // arraySync() Returns an array to use
console.log("After calling softmax on the output:");
console.log(output_values.arraySync());
// Find out "food" or "not food" status
const foodNotFoodClasses = {
0: "Food",
1: "Not Food"
}
const foodOrNot = output_values.argMax().arraySync()
const foodOrNotPredProb = (((1 / 256) * output_max.arraySync()) * 100).toFixed(2)
console.log(`Uploaded image predicted to be: ${foodNotFoodClasses[foodOrNot]}`)
console.log(`Prediction probability of ${foodNotFoodClasses[foodOrNot]}: ${foodOrNotPredProb}%`);
// Return 0 for "food" or 1 for "not food"
if (foodOrNot == 0) {
return true
} else {
return false
}
}