-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_mlp_reconstr.py
87 lines (56 loc) · 1.53 KB
/
run_mlp_reconstr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#!/usr/bin/env python
from __future__ import division, print_function, absolute_import
__author__ = "Marek Rudnicki"
import numpy as np
import scipy.signal as dsp
import thorns.waves as wv
import inverse_cochlea
import matplotlib.pyplot as plt
def main():
### Make sound
fs = 16e3
t = np.arange(0, 0.1, 1/fs)
s0 = np.zeros_like(t)
s1 = dsp.chirp(t, 150, t[-1], 2000)
s1 = inverse_cochlea.set_dbspl(s1, 60)
s1[300:400] = 0
s2 = dsp.chirp(t, 2000, t[-1], 150)
s2 = inverse_cochlea.set_dbspl(s2, 50)
s2[300:400] = 0
sound = np.concatenate( (s0, s1, s2) )
### Setup the neural network
mlp_reconstructor = inverse_cochlea.MlpReconstructor(
band=(125,2000),
fs_net=8e3,
hidden_layer_size=5,
anf_type='msr',
channel_num=50,
)
### Train
mlp_reconstructor.train(
sound,
fs,
maxfun=200
)
### Test
anf = inverse_cochlea.run_ear(
sound=sound,
fs=fs,
cf=mlp_reconstructor.cfs,
anf_type=mlp_reconstructor.anf_type
)
reconstruction, fs_reconstruction = mlp_reconstructor.run(
anf
)
### Plot results
fig, ax = plt.subplots(3, 1, sharex=True)
wv.plot_signal(sound, fs=fs, ax=ax[0])
ax[1].imshow(
np.flipud(anf.data.T),
aspect='auto',
extent=(0, anf.data.shape[0]/anf.fs, 0, anf.data.shape[1])
)
wv.plot_signal(reconstruction, fs=fs_reconstruction, ax=ax[2])
plt.show()
if __name__ == "__main__":
main()