-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
78 lines (57 loc) · 3.31 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import numpy
import time
import measurement_model
import state_space_model
import predicted_covariance
import measurement_rasidual
import rasidual_covariance
import optimal_kalman_gain
class main():
def __init__(self):
self.measurement_model_obj = measurement_model.measurement_model()
self.state_space_model_obj = state_space_model.state_space_model()
self.predicted_covariance_obj = predicted_covariance.predicted_covariance()
self.measurement_rasidual_obj = measurement_rasidual.measurement_rasidual()
self.rasidual_covariance_obj = rasidual_covariance.rasidual_covariance()
self.optimal_kalman_gain_obj = optimal_kalman_gain.optimal_kalman_gain()
self.state_vector = None
#start processes
#self.main_precess()
def call_space_model(self):
self.state_space_model_obj.execute_model()
self.state_vector = self.state_space_model_obj.x_sub_k
#print("{}{}{}{}{}".format("state_vector","\n",self.state_vector,"\n","*"*20,"\n"))
def call_measurement_model(self,state_vetor):
self.measurement_model_obj.execute_model(state_vetor)
#print("{}{}{}{}{}".format("y_sub_k","\n",self.measurement_model_obj.y_sub_k,"\n","*"*20,"\n"))
def call_predicted_covariance(self,F_matrix):
self.predicted_covariance_obj.execute_model(F_matrix)
#print("{}{}{}{}{}".format("P_sub_k_to_minus_1","\n",self.predicted_covariance_obj.P_sub_k_to_minus_1,"\n","*"*20,"\n"))
def call_measurement_rasidual(self,y_sub_k):
self.measurement_rasidual_obj.execute_model(y_sub_k)
#print("{}{}{}{}{}".format("predicted_y_sub_k","\n",self.measurement_rasidual_obj.predicted_y_sub_k,"\n","*"*20,"\n"))
def call_rasidual_covariance(self,H_matrix,P_sub_k_to_minus_1):
self.rasidual_covariance_obj.execute_model(H_matrix,P_sub_k_to_minus_1)
#print("{}{}{}{}{}".format("S_sub_k","\n",self.rasidual_covariance_obj.S_sub_k,"\n","*"*20,"\n"))
def call_optimal_kalman_gain(self,H_matrix,P_sub_k_to_minus_1,S_sub_k):
self.optimal_kalman_gain_obj.execute_model(H_matrix,P_sub_k_to_minus_1,S_sub_k)
#print("{}{}{}{}{}".format("K_sub_k","\n",self.optimal_kalman_gain_obj.K_sub_k,"\n","*"*20,"\n"))
def update_state_estimate(self):
self.corrected_state_vector = self.state_space_model_obj.x_sub_k + (self.optimal_kalman_gain_obj.K_sub_k @ self.measurement_rasidual_obj.predicted_y_sub_k)
#print("{}{}{}{}{}".format("corrected state_vector","\n",self.corrected_state_vector,"\n","*"*20,"\n"))
self.state_space_model_obj.update_parameters()
def update_state_covariance(self):
#P_k - (K_k @ H_k @ P_k)
self.predicted_covariance_obj.P_sub_k_minus_1_d = self.predicted_covariance_obj.P_sub_k_to_minus_1 - (self.optimal_kalman_gain_obj.K_sub_k @ self.measurement_model_obj.H_matrix @ self.predicted_covariance_obj.P_sub_k_to_minus_1)
def main_precess(self):
self.call_space_model()
self.call_measurement_model(self.state_vector)
self.call_predicted_covariance(self.state_space_model_obj.F_matrix)
self.call_measurement_rasidual(self.measurement_model_obj.y_sub_k)
self.call_rasidual_covariance(self.measurement_model_obj.H_matrix,self.predicted_covariance_obj.P_sub_k_to_minus_1)
self.call_optimal_kalman_gain(self.measurement_model_obj.H_matrix,self.predicted_covariance_obj.P_sub_k_to_minus_1,self.rasidual_covariance_obj.S_sub_k)
self.update_state_estimate()
self.update_state_covariance()
"""if __name__ == '__main__':
main_obj = main()
"""