-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatacube_api.py
327 lines (267 loc) · 11.1 KB
/
datacube_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import requests
import pandas as pd
import logging
from joblib import Memory
# Configure logging
logging.basicConfig(level=logging.INFO)
# Set up caching
cache_dir = './cache'
memory = Memory(cache_dir, verbose=0)
class DatacubeAPI:
"""
Singleton class for accessing the Datacube API.
Attributes:
BASE_URL (str): Base URL of the Datacube API.
"""
BASE_URL = "https://data.statistics.sk/api/v2/"
_instance = None
def __new__(cls):
"""Ensures only one instance of the class is created."""
if cls._instance is None:
cls._instance = super().__new__(cls)
cls._instance.session = requests.Session()
return cls._instance
@classmethod
def get_instance(cls):
"""
Returns the singleton instance of the class.
:return: Singleton instance of DatacubeAPI.
"""
return cls.__new__(cls)
@classmethod
def _make_request(cls, endpoint: str, params: dict = None) -> requests.Response:
"""
Makes a GET request to the specified API endpoint.
:param endpoint: API endpoint to make the request to.
:param params: Parameters to be sent with the request.
:return: Response object from the requests library.
"""
try:
response = cls.get_instance().session.get(f"{cls.BASE_URL}{endpoint}", params=params)
response.raise_for_status()
return response
except requests.ConnectionError as e:
logging.error(f"Connection error: {e}")
except requests.HTTPError as e:
logging.error(f"HTTP error: {e}")
except requests.RequestException as e:
logging.error(f"Request error: {e}")
return None
@staticmethod
def _parse_json_response(response: requests.Response) -> dict:
"""
Parses a JSON response.
:param response: Response object to parse.
:return: Parsed JSON data as a dictionary.
"""
try:
return response.json()
except ValueError:
logging.error("Invalid JSON response")
return None
def get_table_overview(self, language='en') -> dict:
"""
Retrieves an overview of all tables available in the API.
:param language: Language code for the API response.
:return: JSON response containing the overview.
"""
endpoint = f"collection?lang={language}"
response = self._make_request(endpoint)
return response.json() if response else None
def get_table_dimensions(self, cube_code, dim_code, language='en') -> dict:
"""
Fetches details about specific dimensions of a table.
:param cube_code: The code of the data cube.
:param dim_code: The code of the dimension.
:param language: Language code for the API response.
:return: JSON response containing the dimension details.
"""
endpoint = f"dimension/{cube_code}/{dim_code}?lang={language}"
response = self._make_request(endpoint)
return response.json() if response else None
def get_data(self, cube_code, region_code, year, indicator_code, lang='en', file_type='json') -> dict:
"""
Retrieves data for a given cube, region, year, and set of indicators.
:param cube_code: The code of the data cube.
:param region_code: The code of the region.
:param year: The year for which data is requested.
:param indicator_code: The code of the indicator.
:param lang: Language code for the API response.
:param file_type: The type of the file to fetch ('json' or 'csv').
:return: JSON response or CSV file content.
"""
endpoint = f"dataset/{cube_code}/{region_code}/{year}/{indicator_code}?lang={lang}&type={file_type}"
response = self._make_request(endpoint)
if response:
if file_type == 'json':
return self._parse_json_response(response)
elif file_type == 'csv':
return pd.read_csv(response.url)
return None
def get_dimension_info(self, json_stat, dimension) -> dict:
"""
Extracts detailed information about a particular dimension from a dataset.
:param json_stat: The JSON-stat formatted dataset.
:param dimension: The dimension for which information is requested.
:return: A dictionary with details about the dimension.
"""
if 'dimension' in json_stat and dimension in json_stat['dimension']:
details = json_stat['dimension'][dimension]
return {
'label': details.get('label', ''),
'note': details.get('note', ''),
'categories': details['category'].get('label', {})
}
return None
@memory.cache
def search_city_get_code(city_name: str) -> str:
"""
Searches for a city by name and returns its code.
:param city_name: The name of the city to search for.
:return: The code of the city or None if not found.
"""
if not city_name:
logging.error("City name is required")
return None
try:
api = DatacubeAPI.get_instance()
nuts15_details = api.get_table_dimensions('pl5001rr', 'nuts15', 'en')
for code, name in nuts15_details['category']['label'].items():
if city_name.lower() == name.lower():
return code
except Exception as e:
logging.error(f"Error searching city code: {e}")
return None
@memory.cache
def get_latest_year() -> str:
"""
Retrieves the most recent year available in the dataset.
:return: The latest year as a string.
"""
try:
api = DatacubeAPI.get_instance()
year_details = api.get_table_dimensions('pl5001rr', 'pl5001rr_rok', 'en')
return max(year_details['category']['index'], key=int)
except Exception as e:
logging.error(f"Error fetching latest year: {e}")
return None
@memory.cache
def get_all_indicators() -> dict:
"""
Retrieves all available indicators from the dataset.
:return: A dictionary of indicators.
"""
try:
api = DatacubeAPI.get_instance()
indicators = api.get_table_dimensions('pl5001rr', 'pl5001rr_ukaz', 'sk')
return indicators['category']['label']
except Exception as e:
logging.error(f"Error fetching indicators: {e}")
return {}
@memory.cache
def get_land_data(cities_string: str, year: str, indicators: list) -> dict:
"""
Fetches data for each indicator for specified cities and year.
:param cities_string: Comma-separated string of city codes.
:param year: The year for which data is requested.
:param indicators: A list of indicators to fetch data for.
:return: A dictionary with city codes as keys and dictionaries of city names and indicator data as values.
"""
data = {}
api = DatacubeAPI.get_instance()
indicator_string_list = ','.join(indicators)
response = api.get_data('pl5001rr', cities_string, year, indicator_string_list)
if not response or 'value' not in response:
logging.error("Invalid or empty response in get_land_data")
return None
values = response['value']
dimensions = response['dimension']
indicator_info = dimensions.get('pl5001rr_ukaz', {})
city_info = dimensions.get('nuts15', {})
city_codes = city_info.get('category', {}).get('index', {})
indicator_codes = indicator_info.get('category', {}).get('index', {})
city_labels = city_info.get('category', {}).get('label', {})
#indicator_labels = indicator_info.get('category', {}).get('label', {})
if not city_codes or not indicator_codes:
logging.error("Missing or empty indicators or city information in the response")
return None
for i, val in enumerate(values):
if val == "None": # Skip missing values
continue
city_index = i // len(indicator_codes)
indicator_index = i % len(indicator_codes)
city_code = list(city_codes.keys())[city_index]
indicator_code = list(indicator_codes.keys())[indicator_index]
city_name = city_labels.get(city_code, "Unknown City")
#indicator_name = indicator_labels.get(indicator_code, "Unknown Indicator")
if city_code not in data:
data[city_code] = {'municipalityName': city_name}
data[city_code][indicator_code] = val
return data
@memory.cache
def get_land_data_cities_code(cities_code_list: list) -> pd.DataFrame:
"""
Fetches and formats land data for a list of city codes.
:param cities_code_list: List of city codes.
:return: DataFrame with land data indexed by city codes.
"""
if not cities_code_list:
logging.error("City codes are required")
return None
if isinstance(cities_code_list, (pd.DataFrame, pd.Series)):
cities_code_list = cities_code_list.tolist()
cities_string = ','.join(cities_code_list)
latest_year = get_latest_year()
if not latest_year:
logging.error("Failed to fetch the latest year")
return None
indicators = get_all_indicators()
if not indicators:
logging.error("Failed to fetch indicators")
return None
cities_data = get_land_data(cities_string, latest_year, list(indicators.keys()))
if not cities_data:
logging.error("Failed to fetch land data for all cities")
return None
df = pd.DataFrame.from_dict(cities_data, orient='index').reset_index().rename(columns={'index': 'municipalityCode'})
required_columns = ['municipalityName'] + list(indicators.keys())
missing_columns = [col for col in required_columns if col not in df.columns]
if missing_columns:
logging.error(f"Missing required columns: {missing_columns}")
return None
return df.set_index('municipalityCode')
@memory.cache
def get_city_codes(cities_name_list: list) -> list:
"""
Converts a list of city names to their corresponding city codes.
:param cities_name_list: List of city names.
:return: List of corresponding city codes.
"""
if not cities_name_list:
logging.error("City names are required")
return None
# Convert cities to a list if it's a pandas DataFrame or Series
if isinstance(cities_name_list, (pd.DataFrame, pd.Series)):
cities_name_list = cities_name_list.tolist()
all_city_codes = []
for city_name in cities_name_list:
city_code = search_city_get_code(city_name)
if not city_code:
logging.warning(f"City code for city '{city_name}' not found. Skipping.")
continue
all_city_codes.append(city_code)
if len(all_city_codes) != len(cities_name_list):
logging.error("Failed to fetch city codes for all cities")
return None
return all_city_codes
@memory.cache
def get_land_data_cities_name(cities_name_list: list) -> pd.DataFrame:
"""
Retrieves land data for a list of city names.
:param cities_name_list: List of city names.
:return: DataFrame with land data indexed by city codes.
"""
city_codes_list = get_city_codes(cities_name_list)
if not city_codes_list:
return None
return get_land_data_cities_code(city_codes_list)