-
Notifications
You must be signed in to change notification settings - Fork 400
/
Copy pathpredict.py
97 lines (83 loc) · 3.77 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# Copyright (c) 2020 Sarthak Mittal
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import os
import glob
import json
import argparse
from invoicenet import FIELDS
from invoicenet.acp.acp import AttendCopyParse
def main():
ap = argparse.ArgumentParser()
ap.add_argument("--field", nargs='+', type=str, required=True, choices=FIELDS.keys(),
help="field to train parser for")
ap.add_argument("--invoice", type=str, default=None,
help="path to invoice pdf file")
ap.add_argument("--data_dir", type=str, default='invoices/',
help="path to directory containing invoice pdf files")
ap.add_argument("--pred_dir", type=str, default='predictions/',
help="path to directory where predictions should be stored")
args = ap.parse_args()
paths = []
fields = []
predictions = {}
if args.invoice:
if not os.path.exists(args.invoice):
print("ERROR: Could not find file '{}'".format(args.invoice))
return
if not args.invoice.endswith('.pdf'):
print("ERROR: '{}' is not a PDF file".format(args.invoice))
return
paths.append(args.invoice)
else:
paths = [os.path.abspath(f) for f in glob.glob(args.data_dir + "**/*.pdf", recursive=True)]
if not os.path.exists('./models/invoicenet/'):
print("Could not find any trained models!")
return
else:
models = os.listdir('./models/invoicenet/')
for field in args.field:
if field in models:
fields.append(field)
else:
print("Could not find a trained model for field '{}', skipping...".format(field))
for field in fields:
print("\nExtracting field '{}' from {} invoices...\n".format(field, len(paths)))
model = AttendCopyParse(field=field, restore=True)
predictions[field] = model.predict(paths=paths)
os.makedirs(args.pred_dir, exist_ok=True)
for idx, filename in enumerate(paths):
filename = os.path.basename(filename)[:-3] + 'json'
labels = {}
if os.path.exists(os.path.join(args.pred_dir, filename)):
with open(os.path.join(args.pred_dir, filename), 'r') as fp:
try:
labels = json.load(fp)
except:
labels = {}
with open(os.path.join(args.pred_dir, filename), 'w') as fp:
print("\nFilename: {}".format(filename))
for field in predictions.keys():
labels[field] = predictions[field][idx]
print(" {}: {}".format(field, labels[field]))
fp.write(json.dumps(labels, indent=2))
print('\n')
print("Predictions stored in '{}'".format(args.pred_dir))
if __name__ == '__main__':
main()