forked from sxyu/plenoctree
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdb_utils.py
98 lines (83 loc) · 3.62 KB
/
db_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import numpy as np
import torch
import cv2
from scipy.spatial.transform import Rotation
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import axes3d, Axes3D
from PIL import Image
import imageio
from tqdm import tqdm
from copy import deepcopy
import svox
def xyzrpy2c2w(xyz, rpy):
c2w = np.zeros([4,4])
c2w[:3,:3] = Rotation.from_euler('xyz', rpy, degrees=True).as_matrix()
c2w[:,3] = np.concatenate([xyz, np.array([1.,])])
return c2w
def show_c2w(c2w, ss=3, sv=0.5, figsize=(4,4), rot1=None, rot2=None):
c2w = deepcopy(c2w)
fig = plt.figure(figsize=figsize)
ax = Axes3D(fig, auto_add_to_figure=False)
ax.set_xlim(-ss, ss); ax.set_ylim(-ss,ss); ax.set_zlim(-ss, ss)
ax.set_xlabel("x"); ax.set_ylabel("y"); ax.set_zlabel("z")
ax.quiver(0, 0, 0, 1, 0, 0, length=sv*2, color="r", alpha=0.5)
ax.quiver(0, 0, 0, 0, 1, 0, length=sv*2, color="g", alpha=0.5)
ax.quiver(0, 0, 0, 0, 0, 1, length=sv*2, color="b", alpha=0.5)
ax.plot([-1,1,1,-1,-1], [-1,-1,1,1,-1], [0,0,0,0,0], color="k", linestyle=":")
if rot1: # rot first
rot1 = Rotation.from_euler('xyz', rot1, degrees=True).as_matrix()
c2w[:3,:3] = c2w[:3,:3].dot(rot1)
if rot2: # c2w first
rot2 = Rotation.from_euler('xyz', rot2, degrees=True).as_matrix()
c2w[:3,:3] = rot2.dot(c2w[:3,:3])
x, y, z = c2w[:3,3]
ax.scatter(x, y, z, c='blue', s=0.1)
x_c = np.array([[1,0,0]]).T; x_w = c2w[:3,:3].dot(x_c)
dx, dy, dz = x_w[:,0]
ax.quiver(x, y, z, dx, dy, dz, length=sv, color="r")
# print("dx:", np.round(np.array([dx,dy,dz]), 3))
x_c = np.array([[0,1,0]]).T; x_w = c2w[:3,:3].dot(x_c)
dx, dy, dz = x_w[:,0]
ax.quiver(x, y, z, dx, dy, dz, length=sv, color="g")
# print("dy:", np.round(np.array([dx,dy,dz]), 3))
x_c = np.array([[0,0,1]]).T; x_w = c2w[:3,:3].dot(x_c)
dx, dy, dz = x_w[:,0]
ax.quiver(x, y, z, dx, dy, dz, length=sv, color="b")
# print("dz:", np.round(np.array([dx,dy,dz]), 3))
fig.add_axes(ax)
fig.canvas.draw(); im = np.array(fig.canvas.renderer.buffer_rgba()); plt.close()
return Image.fromarray(im)
def render_and_show(r, c2w, w, h, focal, ss=3, sv=0.5, device=0):
c2w = deepcopy(c2w)
im1 = show_c2w(c2w, ss, sv)
c2w = torch.from_numpy(c2w).float()
fig = plt.figure(figsize=(4,4))
with torch.no_grad():
im = r.render_persp(c2w.to(device), w, h, fx=focal, fast=True)
im = (im.clamp_(0.0, 1.0).cpu().numpy() * 255).astype(np.uint8)
plt.imshow(im)
fig.canvas.draw(); im2 = np.array(fig.canvas.renderer.buffer_rgba()); plt.close()
return Image.fromarray(np.hstack([im1, im2])[:,:,:3])
def speedtest(r, dataset, save_path=None, device=0):
w, h, focal = dataset.w, dataset.h, dataset.focal
frames = []
for idx in tqdm(range(dataset.size)):
c2w = torch.from_numpy(dataset.camtoworlds[idx]).float().to(device)
with torch.no_grad():
im = r.render_persp(c2w, w, h, fx=focal, fast=True)
im = (im.clamp_(0.0, 1.0).cpu().numpy() * 255).astype(np.uint8)
if idx==0: plt.imshow(im); plt.show()
if save_path: frames.append(im)
if save_path: imageio.mimwrite(save_path, frames, fps=30, macro_block_size=8)
def lighten_tree(t, thresh, value=0):
with torch.no_grad():
t[
(-thresh > t.corners[:,0].cpu().numpy()) | \
(t.corners[:,0].cpu().numpy() > thresh) | \
(-thresh > t.corners[:,1].cpu().numpy()) | \
(t.corners[:,1].cpu().numpy() > thresh) | \
(-thresh > t.corners[:,2].cpu().numpy()) | \
(t.corners[:,2].cpu().numpy() > thresh),
-1
] = value
return t