-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain.py
316 lines (273 loc) · 12.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
# coding=utf-8
# Copyright 2021 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Training script for Nerf."""
import functools
import gc
import time
from absl import app
from absl import flags
import flax
from flax.metrics import tensorboard
from flax.training import checkpoints
import jax
from jax import config
from jax import random
from jax import device_put
import jax.numpy as jnp
import numpy as np
import os
from multiprocessing import Process
from nerf import datasets
from nerf import models
from nerf import utils
FLAGS = flags.FLAGS
utils.define_flags()
config.parse_flags_with_absl()
def train_step(model, voxel, len_inpc, len_inpf, rng, state, batch, lr):
"""One optimization step.
Args:
model: The linen model.
rng: jnp.ndarray, random number generator.
state: utils.TrainState, state of the model/optimizer.
batch: dict, a mini-batch of data for training.
lr: float, real-time learning rate.
Returns:
new_state: utils.TrainState, new training state.
stats: list. [(loss, psnr), (loss_coarse, psnr_coarse)].
rng: jnp.ndarray, updated random number generator.
"""
rng, key_0, key_1 = random.split(rng, 3)
def loss_fn(variables):
rays = batch["rays"]
ret, aux = model.apply(variables, key_0, key_1, rays, voxel, len_inpc, len_inpf, FLAGS.randomized)
if len(ret) not in (1, 2):
raise ValueError(
"ret should contain either 1 set of output (coarse only), or 2 sets"
"of output (coarse as ret[0] and fine as ret[1]).")
# The main prediction is always at the end of the ret list.
rgb, unused_disp, unused_acc = ret[-1]
loss = ((rgb - batch["pixels"][Ellipsis, :3])**2).mean()
psnr = utils.compute_psnr(loss)
if len(ret) > 1:
# If there are both coarse and fine predictions, we compute the loss for
# the coarse prediction (ret[0]) as well.
rgb_c, unused_disp_c, unused_acc_c = ret[0]
loss_c = ((rgb_c - batch["pixels"][Ellipsis, :3])**2).mean()
psnr_c = utils.compute_psnr(loss_c)
else:
loss_c = 0.
psnr_c = 0.
def tree_sum_fn(fn):
return jax.tree_util.tree_reduce(
lambda x, y: x + fn(y), variables, initializer=0)
weight_l2 = (
tree_sum_fn(lambda z: jnp.sum(z**2)) /
tree_sum_fn(lambda z: jnp.prod(jnp.array(z.shape))))
stats = utils.Stats(
loss=loss, psnr=psnr, loss_c=loss_c, psnr_c=psnr_c, weight_l2=weight_l2, len_c=aux[0], len_f=aux[1])
return loss + loss_c + FLAGS.weight_decay_mult * weight_l2, stats
(_, stats), grad = (
jax.value_and_grad(loss_fn, has_aux=True)(state.optimizer.target))
grad = jax.lax.pmean(grad, axis_name="batch")
stats = jax.lax.pmean(stats, axis_name="batch")
# Clip the gradient by value.
if FLAGS.grad_max_val > 0:
clip_fn = lambda z: jnp.clip(z, -FLAGS.grad_max_val, FLAGS.grad_max_val)
grad = jax.tree_util.tree_map(clip_fn, grad)
# Clip the (possibly value-clipped) gradient by norm.
if FLAGS.grad_max_norm > 0:
grad_norm = jnp.sqrt(
jax.tree_util.tree_reduce(
lambda x, y: x + jnp.sum(y**2), grad, initializer=0))
mult = jnp.minimum(1, FLAGS.grad_max_norm / (1e-7 + grad_norm))
grad = jax.tree_util.tree_map(lambda z: mult * z, grad)
new_optimizer = state.optimizer.apply_gradient(grad, learning_rate=lr)
new_state = state.replace(optimizer=new_optimizer)
return new_state, stats, rng
def render_fn(model, voxel, len_inpc, len_inpf, variables, key_0, key_1, rays):
return jax.lax.all_gather(
model.apply(variables, key_0, key_1, rays, voxel, len_inpc, len_inpf, FLAGS.randomized)[0],
axis_name="batch")
def train(max_steps, check=False):
rng = random.PRNGKey(20200823)
# Shift the numpy random seed by host_id() to shuffle data loaded by different
# hosts.
np.random.seed(20201473 + jax.host_id())
if FLAGS.config is not None:
utils.update_flags(FLAGS, no_nf=True)
if FLAGS.batch_size % jax.device_count() != 0:
raise ValueError("Batch size must be divisible by the number of devices.")
if FLAGS.train_dir is None:
raise ValueError("train_dir must be set. None set now.")
if FLAGS.data_dir is None:
raise ValueError("data_dir must be set. None set now.")
dataset = datasets.get_dataset("train", FLAGS)
test_dataset = datasets.get_dataset("test", FLAGS)
if FLAGS.dataset == "nsvf":
utils.update_flags(FLAGS, no_nf=False)
rng, key = random.split(rng)
model, variables = models.get_model(key, dataset.peek(), FLAGS)
optimizer = flax.optim.Adam(FLAGS.lr_init).create(variables)
state = utils.TrainState(optimizer=optimizer)
del optimizer, variables
### Vax
voxel, len_c, len_f = None, 0, 0
if not FLAGS.voxel_dir == "":
voxel = device_put(jnp.load(os.path.join(FLAGS.voxel_dir, "voxel.npy")))
if os.path.exists(os.path.join(FLAGS.train_dir, "len_inp.txt")):
with open(os.path.join(FLAGS.train_dir, "len_inp.txt"), 'r') as f:
len_c, len_f = map(int, f.readline().split())
FLAGS.len_inpc, FLAGS.len_inpf = int(len_c*1.2), int(len_f*1.2)
learning_rate_fn = functools.partial(
utils.learning_rate_decay,
lr_init=FLAGS.lr_init,
lr_final=FLAGS.lr_final,
max_steps=FLAGS.lr_max_steps,
lr_delay_steps=FLAGS.lr_delay_steps,
lr_delay_mult=FLAGS.lr_delay_mult)
train_pstep = jax.pmap(
functools.partial(train_step, model, voxel, FLAGS.len_inpc, FLAGS.len_inpf),
axis_name="batch",
in_axes=(0, 0, 0, None),
donate_argnums=(2,))
render_pfn = jax.pmap(
functools.partial(render_fn, model, voxel, FLAGS.len_inpc*2, FLAGS.len_inpf*2),
axis_name="batch",
in_axes=(None, None, None, 0), # Only distribute the data input.
donate_argnums=(3,))
# Compiling to the CPU because it's faster and more accurate.
ssim_fn = jax.jit(
functools.partial(utils.compute_ssim, max_val=1.), backend="cpu")
if not utils.isdir(FLAGS.train_dir):
utils.makedirs(FLAGS.train_dir)
state = checkpoints.restore_checkpoint(FLAGS.train_dir, state)
# Resume training a the step of the last checkpoint.
init_step = state.optimizer.state.step + 1
state = flax.jax_utils.replicate(state)
if jax.host_id() == 0:
summary_writer = tensorboard.SummaryWriter(FLAGS.train_dir)
# Prefetch_buffer_size = 3 x batch_size
pdataset = flax.jax_utils.prefetch_to_device(dataset, 3)
n_local_devices = jax.local_device_count()
rng = rng + jax.host_id() # Make random seed separate across hosts.
keys = random.split(rng, n_local_devices) # For pmapping RNG keys.
gc.disable() # Disable automatic garbage collection for efficiency.
stats_trace = []
reset_timer = True
for step, batch in zip(range(init_step, max_steps + 1), pdataset):
if reset_timer:
t_loop_start = time.time()
reset_timer = False
if FLAGS.small_lr_at_first and step <= 1000:
lr = FLAGS.lr_init / 10.
else:
lr = learning_rate_fn(step)
state, stats, keys = train_pstep(keys, state, batch, lr)
if jax.host_id() == 0:
stats_trace.append(stats)
if step % FLAGS.gc_every == 0:
gc.collect()
# Log training summaries. This is put behind a host_id check because in
# multi-host evaluation, all hosts need to run inference even though we
# only use host 0 to record results.
if jax.host_id() == 0:
if step % FLAGS.print_every == 0 or step == max_steps:
summary_writer.scalar("train_loss", stats.loss[0], step)
summary_writer.scalar("train_psnr", stats.psnr[0], step)
summary_writer.scalar("train_loss_coarse", stats.loss_c[0], step)
summary_writer.scalar("train_psnr_coarse", stats.psnr_c[0], step)
summary_writer.scalar("weight_l2", stats.weight_l2[0], step)
avg_loss = np.mean(np.concatenate([s.loss for s in stats_trace]))
avg_psnr = np.mean(np.concatenate([s.psnr for s in stats_trace]))
### Vax
len_c = max(len_c, np.max(np.concatenate([s.len_c for s in stats_trace])))
len_f = max(len_f, np.max(np.concatenate([s.len_f for s in stats_trace])))
stats_trace = []
summary_writer.scalar("train_avg_loss", avg_loss, step)
summary_writer.scalar("train_avg_psnr", avg_psnr, step)
summary_writer.scalar("learning_rate", lr, step)
steps_per_sec = FLAGS.print_every / (time.time() - t_loop_start)
reset_timer = True
rays_per_sec = FLAGS.batch_size * steps_per_sec
summary_writer.scalar("train_steps_per_sec", steps_per_sec, step)
summary_writer.scalar("train_rays_per_sec", rays_per_sec, step)
precision = int(np.ceil(np.log10(FLAGS.max_steps))) + 1
print(("{:" + "{:d}".format(precision) + "d}").format(step) +
f"/{max_steps:d}: " + f"i_loss={stats.loss[0]:0.4f}, " +
f"avg_loss={avg_loss:0.4f}, " +
f"weight_l2={stats.weight_l2[0]:0.2e}, " + f"lr={lr:0.2e}, " +
f"len_c={len_c}, " + f"len_f={len_f}, " +
f"{rays_per_sec:0.0f} rays/sec")
if step % FLAGS.save_every == 0:
state_to_save = jax.device_get(jax.tree_map(lambda x: x[0], state))
checkpoints.save_checkpoint(
FLAGS.train_dir, state_to_save, int(step), keep=100)
# Test-set evaluation.
if FLAGS.render_every > 0 and step % FLAGS.render_every == 0:
# We reuse the same random number generator from the optimization step
# here on purpose so that the visualization matches what happened in
# training.
t_eval_start = time.time()
eval_variables = jax.device_get(jax.tree_map(lambda x: x[0],
state)).optimizer.target
test_case = next(test_dataset)
pred_color, pred_disp, pred_acc = utils.render_image(
functools.partial(render_pfn, eval_variables),
test_case["rays"],
keys[0],
FLAGS.dataset == "llff",
chunk=FLAGS.chunk)
# Log eval summaries on host 0.
if jax.host_id() == 0:
psnr = utils.compute_psnr(
((pred_color - test_case["pixels"])**2).mean())
ssim = ssim_fn(pred_color, test_case["pixels"])
eval_time = time.time() - t_eval_start
num_rays = jnp.prod(jnp.array(test_case["rays"].directions.shape[:-1]))
rays_per_sec = num_rays / eval_time
summary_writer.scalar("test_rays_per_sec", rays_per_sec, step)
print(f"Eval {step}: {eval_time:0.3f}s., {rays_per_sec:0.0f} rays/sec")
summary_writer.scalar("test_psnr", psnr, step)
summary_writer.scalar("test_ssim", ssim, step)
summary_writer.image("test_pred_color", pred_color, step)
summary_writer.image("test_pred_disp", pred_disp, step)
summary_writer.image("test_pred_acc", pred_acc, step)
summary_writer.image("test_target", test_case["pixels"], step)
if FLAGS.max_steps % FLAGS.save_every != 0:
state = jax.device_get(jax.tree_map(lambda x: x[0], state))
checkpoints.save_checkpoint(
FLAGS.train_dir, state, int(step), keep=100)
### Vax
if check:
import shutil
shutil.rmtree(FLAGS.train_dir)
os.makedirs(FLAGS.train_dir)
with open(os.path.join(FLAGS.train_dir, "len_inp.txt"), 'w') as f:
f.write(str(int(len_c)) +" " + str(int(len_f)))
def main(unused_argv):
### Vax
if not FLAGS.voxel_dir == "":
if not os.path.exists(os.path.join(FLAGS.train_dir, "len_inp.txt")):
# check len_inpc
p = Process(target=train, args=(500,True))
p.start(); p.join() # avoid memory leaks
# check len_inpf
if FLAGS.num_fine_samples > 0:
p = Process(target=train, args=(500,True))
p.start(); p.join() # avoid memory leaks
train(FLAGS.max_steps)
if __name__ == "__main__":
app.run(main)