-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathbatchrunner_local.py
493 lines (411 loc) · 17.8 KB
/
batchrunner_local.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
# -*- coding: utf-8 -*-
"""
Batchrunner
===========
A single class to manage a batch run or parameter sweep of a given model.
"""
import copy
from itertools import product, count
import pandas as pd
from tqdm import tqdm
from multiprocessing import Pool, cpu_count
import os
import multiprocessing
import random
class ParameterError(TypeError):
MESSAGE = (
"parameters must map a name to a value. "
"These names did not match paramerets: {}"
)
def __init__(self, bad_names):
self.bad_names = bad_names
def __str__(self):
return self.MESSAGE.format(self.bad_names)
class VariableParameterError(ParameterError):
MESSAGE = (
"variable_parameters must map a name to a sequence of values. "
"These parameters were given with non-sequence values: {}"
)
def __init__(self, bad_names):
super().__init__(bad_names)
class FixedBatchRunner:
""" This class is instantiated with a model class, and model parameters
associated with one or more values. It is also instantiated with model and
agent-level reporters, dictionaries mapping a variable name to a function
which collects some data from the model or its agents at the end of the run
and stores it.
Note that by default, the reporters only collect data at the *end* of the
run. To get step by step data, simply have a reporter store the model's
entire DataCollector object.
"""
def __init__(
self,
model_cls,
parameters_list=None,
fixed_parameters=None,
iterations=1,
max_steps=1000,
model_reporters=None,
agent_reporters=None,
display_progress=True,
):
""" Create a new BatchRunner for a given model with the given
parameters.
Args:
model_cls: The class of model to batch-run.
parameters_list: A list of dictionaries of parameter sets.
The model will be run with dictionary of paramters.
For example, given parameters_list of
[{"homophily": 3, "density": 0.8, "minority_pc": 0.2},
{"homophily": 2, "density": 0.9, "minority_pc": 0.1},
{"homophily": 4, "density": 0.6, "minority_pc": 0.5}]
3 models will be run, one for each provided set of parameters.
fixed_parameters: Dictionary of parameters that stay same through
all batch runs. For example, given fixed_parameters of
{"constant_parameter": 3},
every instantiated model will be passed constant_parameter=3
as a kwarg.
iterations: The total number of times to run the model for each set
of parameters.
max_steps: Upper limit of steps above which each run will be halted
if it hasn't halted on its own.
model_reporters: The dictionary of variables to collect on each run
at the end, with variable names mapped to a function to collect
them. For example:
{"agent_count": lambda m: m.schedule.get_agent_count()}
agent_reporters: Like model_reporters, but each variable is now
collected at the level of each agent present in the model at
the end of the run.
display_progress: Display progresss bar with time estimation?
"""
self.model_cls = model_cls
if parameters_list is None:
parameters_list = []
self.parameters_list = list(parameters_list)
self.fixed_parameters = fixed_parameters or {}
self._include_fixed = len(self.fixed_parameters.keys()) > 0
self.iterations = iterations
self.max_steps = max_steps
self.model_reporters = model_reporters
self.agent_reporters = agent_reporters
if self.model_reporters:
self.model_vars = {}
if self.agent_reporters:
self.agent_vars = {}
self.display_progress = display_progress
def _make_model_args(self):
"""Prepare all combinations of parameter values for `run_all`
Returns:
Tuple with the form:
(total_iterations, all_kwargs, all_param_values)
"""
total_iterations = self.iterations
all_kwargs = []
count = len(self.parameters_list)
if count:
for params in self.parameters_list:
kwargs = params.copy()
kwargs.update(self.fixed_parameters)
#run each iterations specific number of times
for iter in range(self.iterations):
kwargs_repeated = kwargs.copy()
all_kwargs.append([self.model_cls, kwargs_repeated, self.max_steps, iter])
elif len(self.fixed_parameters):
count = 1
kwargs = self.fixed_parameters.copy()
all_kwargs.append(kwargs)
total_iterations *= count
return all_kwargs, total_iterations
#return (total_iterations, all_kwargs, all_param_values)
def run_all(self):
""" Run the model at all parameter combinations and store results. """
run_count = count()
total_iterations, all_kwargs, all_param_values = self._make_model_args()
with tqdm(total_iterations, disable=not self.display_progress) as pbar:
for i, kwargs in enumerate(all_kwargs):
param_values = all_param_values[i]
for _ in range(self.iterations):
self.run_iteration(kwargs, param_values, next(run_count))
pbar.update()
@staticmethod
def run_wrapper(iter_args, return_dict):
model_i = iter_args[0]
kwargs = iter_args[1]
max_steps = iter_args[2]
# iter_args[1].update({'iteration': iter_args[3]})
iteration = iter_args[3]
def run_iteration(model_i, kwargs, max_steps, iteration):
#instantiate version of model with correct parameters
model = model_i(**kwargs)
while model.running and model.schedule.steps < max_steps:
model.step()
dfs = []
for data in model.data_lists:
dfs.append(model.data_coll)
return_dict[iteration] = [model.retrieve_model_Data(), model.retrieve_agent_Data()]
# if model.datacollector:
# return model.datacollector.get_model_vars_dataframe()
# else:
# return kwargs, "no datacollector in model"
run_iteration(model_i, kwargs, max_steps, iteration)
def run_model(self, model):
""" Run a model object to completion, or until reaching max steps.
If your model runs in a non-standard way, this is the method to modify
in your subclass.
"""
while model.running and model.schedule.steps < self.max_steps:
model.step()
count+=1
def collect_model_vars(self, model):
""" Run reporters and collect model-level variables. """
model_vars = {}
for var, reporter in self.model_reporters.items():
model_vars[var] = reporter(model)
return model_vars
def collect_agent_vars(self, model):
""" Run reporters and collect agent-level variables. """
agent_vars = {}
for agent in model.schedule._agents.values():
agent_record = {}
for var, reporter in self.agent_reporters.items():
agent_record[var] = getattr(agent, reporter)
agent_vars[agent.unique_id] = agent_record
return agent_vars
'''
def get_model_vars_dataframe(self):
""" Generate a pandas DataFrame from the model-level variables
collected.
"""
return self._prepare_report_table(self.model_vars)
def get_agent_vars_dataframe(self):
""" Generate a pandas DataFrame from the agent-level variables
collected.
"""
return self._prepare_report_table(self.agent_vars, extra_cols=["AgentId"])
def _prepare_report_table(self, vars_dict, extra_cols=None):
"""
Creates a dataframe from collected records and sorts it using 'Run'
column as a key.
"""
extra_cols = ["Run"] + (extra_cols or [])
index_cols = set()
for params in self.parameters_list:
index_cols |= params.keys()
index_cols = list(index_cols) + extra_cols
records = []
for param_key, values in vars_dict.items():
record = dict(zip(index_cols, param_key))
record.update(values)
records.append(record)
df = pd.DataFrame(records)
rest_cols = set(df.columns) - set(index_cols)
ordered = df[index_cols + list(sorted(rest_cols))]
ordered.sort_values(by="Run", inplace=True)
if self._include_fixed:
for param in self.fixed_parameters.keys():
val = self.fixed_parameters[param]
# avoid error when val is an iterable
vallist = [val for i in range(ordered.shape[0])]
ordered[param] = vallist
return ordered
'''
# This is kind of a useless class, but it does carry the 'source' parameters with it
class ParameterProduct:
def __init__(self, variable_parameters):
if variable_parameters != None:
self.param_names, self.param_lists = zip(
*(copy.deepcopy(variable_parameters)).items()
)
self._product = product(*self.param_lists)
else:
self.param_names = None
self.param_lists = None
def __iter__(self):
return self
def __next__(self):
if self.param_names != None:
return dict(zip(self.param_names, next(self._product)))
else:
return []
# Roughly inspired by sklearn.model_selection.ParameterSampler. Does not handle
# distributions, only lists.
class ParameterSampler:
def __init__(self, parameter_lists, n, random_state=None):
self.param_names, self.param_lists = zip(
*(copy.deepcopy(parameter_lists)).items()
)
self.n = n
if random_state is None:
self.random_state = random.Random()
elif isinstance(random_state, int):
self.random_state = random.Random(random_state)
else:
self.random_state = random_state
self.count = 0
def __iter__(self):
return self
def __next__(self):
self.count += 1
if self.count <= self.n:
return dict(
zip(
self.param_names,
[self.random_state.choice(l) for l in self.param_lists],
)
)
raise StopIteration()
class BatchRunner(FixedBatchRunner):
""" This class is instantiated with a model class, and model parameters
associated with one or more values. It is also instantiated with model and
agent-level reporters, dictionaries mapping a variable name to a function
which collects some data from the model or its agents at the end of the run
and stores it.
Note that by default, the reporters only collect data at the *end* of the
run. To get step by step data, simply have a reporter store the model's
entire DataCollector object.
"""
def __init__(
self,
model_cls,
variable_parameters=None,
fixed_parameters=None,
iterations=1,
max_steps=1000,
model_reporters=None,
agent_reporters=None,
display_progress=True,
):
""" Create a new BatchRunner for a given model with the given
parameters.
Args:
model_cls: The class of model to batch-run.
variable_parameters: Dictionary of parameters to lists of values.
The model will be run with every combo of these paramters.
For example, given variable_parameters of
{"param_1": range(5),
"param_2": [1, 5, 10]}
models will be run with {param_1=1, param_2=1},
{param_1=2, param_2=1}, ..., {param_1=4, param_2=10}.
fixed_parameters: Dictionary of parameters that stay same through
all batch runs. For example, given fixed_parameters of
{"constant_parameter": 3},
every instantiated model will be passed constant_parameter=3
as a kwarg.
iterations: The total number of times to run the model for each
combination of parameters.
max_steps: Upper limit of steps above which each run will be halted
if it hasn't halted on its own.
model_reporters: The dictionary of variables to collect on each run
at the end, with variable names mapped to a function to collect
them. For example:
{"agent_count": lambda m: m.schedule.get_agent_count()}
agent_reporters: Like model_reporters, but each variable is now
collected at the level of each agent present in the model at
the end of the run.
display_progress: Display progresss bar with time estimation?
"""
super().__init__(
model_cls,
ParameterProduct(variable_parameters),
fixed_parameters,
iterations,
max_steps,
model_reporters,
agent_reporters,
display_progress,
)
class MPSupport(Exception):
def __str__(self):
return (
"BatchRunnerMP depends on pathos, which is either not "
"installed, or the path can not be found. "
)
class BatchRunnerMP(BatchRunner):
""" Child class of BatchRunner, extended with multiprocessing support. """
def __init__(self, model_cls, nr_processes=None, **kwargs):
""" Create a new BatchRunnerMP for a given model with the given
parameters.
Args:
model_cls: The class of model to batch-run.
nr_processes: the number of separate processes the BatchRunner
should start, all running in parallel.
kwargs: the kwargs required for the parent BatchRunner class
"""
if nr_processes == None:
#identifies the number of processors available on users machine
available_processors = cpu_count()
self.processes = available_processors
print ("Your system has {} available processors.".format(self.processes))
else:
self.processes = nr_processes
super().__init__(model_cls, **kwargs)
self.pool = Pool(self.processes)
def run_all(self):
"""
Run the model at all parameter combinations and store results,
overrides run_all from BatchRunner.
"""
run_count = count()
run_iter_args, total_iterations = self._make_model_args()
# register the process pool and init a queue
#results = []
results = {}
#with tqdm(total_iterations, disable=not self.display_progress) as pbar:
#for i, kwargs in enumerate(all_kwargs):
# param_values = all_param_values[i]
# for _ in range(self.iterations):
# make a new process and add it to the queue
#with self.pool as p:
if self.processes > 1:
#Boots to the ground multiprocessing, if you believe the pool is more efficient then omit all of these changes.
#I just had an issue on Windows 10 where if I tried using a nested multiprocess (i.e running different types of scenarios in parallel)
manager = multiprocessing.Manager()
return_dict = manager.dict()
processes = []
for parameter in run_iter_args:
process = multiprocessing.Process(target=self.run_wrapper, args=(parameter,return_dict))
process.start()
processes.append(process)
for process in processes:
process.join()
results = return_dict
# for params, model_data in self.pool.imap_unordered(self.run_wrapper, run_iter_args):
# results[str(params)] = model_data
#For debugging model due to difficulty of getting errors during multiprocessing
else:
for run in run_iter_args:
model_data, agent_data = self.run_wrapper(run)
#params, model_data = self.run_wrapper(run)
#no need for a dictionary since one set of results
results[str(params)] = model_data
return results
# empty the queue
'''
results = []
for task in job_queue:
for model_vars, agent_vars in list(task):
results.append((model_vars, agent_vars))
pbar.update()
# store the results
for model_vars, agent_vars in results:
if self.model_reporters:
for model_key, model_val in model_vars.items():
self.model_vars[model_key] = model_val
if self.agent_reporters:
for agent_key, reports in agent_vars.items():
self.agent_vars[agent_key] = reports
with tqdm(total_iterations, disable=not self.display_progress) as pbar:
for i, kwargs in enumerate(all_kwargs):
param_values = all_param_values[i]
for _ in range(self.iterations):
# make a list of parameters for each model run
job_queue.append((kwargs, param_values, next(run_count)))
#start dictionary to store results
#results[next(run_count)] =[param_values]
# empty the queue
results = []
print (len(job_queue))
with self.pool as p:
results.append(p.imap_unordered(self.run_iteration, job_queue))
pbar.update()
'''