-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathprogram36_TrainingData.py
4717 lines (3329 loc) · 147 KB
/
program36_TrainingData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import print_function
from __future__ import absolute_import
import tensorflow as tf
print(tf.__version__)
import sys
import numpy
import os, tarfile, errno
import matplotlib.pyplot as plt
import numpy.random
import scipy.stats as ss
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
if sys.version_info >= (3, 0, 0):
import urllib.request as urllib
else:
import urllib
try:
from imageio import imsave
except:
from scipy.misc import imsave
print(sys.version_info) # we use: sys.version_info
from sklearn.ensemble import IsolationForest # Import IsolationForest module
# use: https://towardsdatascience.com/anomaly-detection-for-dummies-15f148e559c1
import matplotlib.pyplot as plt
import seaborn as sns; sns.set()
import numpy.random
import scipy.stats as ss
from sklearn.mixture import GaussianMixture
import os
import tensorflow as tf
from sklearn import metrics
# use: https://medium.com/startup-grind/fueling-the-ai-gold-rush-7ae438505bc2
# https://www.analyticsinsight.net/best-computer-vision-courses-to-master-in-2019/
from gluoncv import data, utils
from gluoncv.data import ImageNet
from mxnet.gluon.data import DataLoader
from mxnet.gluon.data.vision import transforms
import scipy.io as sio
import matplotlib.pyplot as plt
from matplotlib import pyplot as plt
# https://medium.com/startup-grind/fueling-the-ai-gold-rush-7ae438505bc2
# https://www.analyticsinsight.net/best-computer-vision-courses-to-master-in-2019/
# UCI data: https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
# Human Activity Recognition Using Smartphones Data Set, archive.ics.uci.edu, Human Activity Recognition
import numpy as np
import tensorflow as tf
ds = tf.contrib.distributions
# MNIST: Keras or scikit-learn embedded datasets
# For example, Keras: from keras.datasets import mnist
#def sample_mog(batch_size, n_mixture=8, std=0.01, radius=1.0):
#def sample_mog(batch_size, n_mixture=8, std=0.01, radius=1.0):
def sample_mog(batch_size, n_mixture=8, std=0.01, radius=1.0):
#thetas = np.linspace(0, 2 * np.pi, n_mixture)
thetas = np.linspace(0, 2 * np.pi, n_mixture)
xs, ys = radius * np.sin(thetas), radius * np.cos(thetas)
cat = ds.Categorical(tf.zeros(n_mixture))
comps = [ds.MultivariateNormalDiag([xi, yi], [std, std]) for xi, yi in zip(xs.ravel(), ys.ravel())]
data = ds.Mixture(cat, comps)
return data.sample(batch_size)
# sample_mog(128)
print(sample_mog(128))
samplePoints = sample_mog(1000)
print(samplePoints)
tf.InteractiveSession()
samplePoints2 = samplePoints.eval()
plt.plot(samplePoints2[:,0], samplePoints2[:,1])
plt.xlabel('x')
plt.ylabel('y')
plt.show()
samplePoints = sample_mog(100, 4, 0.03, 0.7)
print(samplePoints)
tf.InteractiveSession()
samplePoints2 = samplePoints.eval()
plt.plot(samplePoints2[:,0], samplePoints2[:,1])
plt.xlabel('x')
plt.ylabel('y')
plt.show()
# index
image_ind = 10
#train_data = sio.loadmat('train_32x32.mat')
train_data = sio.loadmat('/Users/dionelisnikolaos/Downloads/train_32x32.mat')
# The SVHN Dataset
# Street View House Numbers (SVHN)
# access to the dict
x_train = train_data['X']
y_train = train_data['y']
# show sample
plt.imshow(x_train[:,:,:,image_ind])
plt.show()
print(y_train[image_ind])
image_ind = 10 # index, image index
test_data = sio.loadmat('/Users/dionelisnikolaos/Downloads/test_32x32.mat')
# access to the dict
x_test = test_data['X']
y_test = test_data['y']
# show sample
plt.imshow(x_test[:,:,:,image_ind])
plt.show()
print(y_test[image_ind])
# Import Line2D for marking legend in graph
from matplotlib.lines import Line2D
mean = [0, 0] # define the mean
cov = [[1, 0], [0, 100]] # diagonal covariance
import matplotlib.pyplot as plt
x, y = np.random.multivariate_normal(mean, cov, 5000).T
plt.plot(x, y, 'x')
plt.axis('equal')
plt.show()
n = 10000
numpy.random.seed(0x5eed)
# Parameters of the mixture components
norm_params = np.array([[5, 1], [1, 1.3], [9, 1.3]])
n_components = norm_params.shape[0]
# Weight of each component, in this case all of them are 1/3
weights = np.ones(n_components, dtype=np.float64) / float(n_components)
mixture_idx = numpy.random.choice(n_components, size=n, replace=True, p=weights) # Indices to choose the component
y = numpy.fromiter((ss.norm.rvs(*(norm_params[i])) for i in mixture_idx), dtype=np.float64) # y is the mixture sample
# Theoretical PDF plotting -- generate the x and y plotting positions
xs = np.linspace(y.min(), y.max(), 200)
ys = np.zeros_like(xs)
for (l, s), w in zip(norm_params, weights):
ys += ss.norm.pdf(xs, loc=l, scale=s) * w
plt.plot(xs, ys)
plt.hist(y, normed=True, bins="fd")
plt.xlabel("x")
plt.ylabel("f(x)")
plt.show()
# Generate synthetic data
N,D = 1000, 2 # number of points and dimensionality
if D == 2:
#set gaussian ceters and covariances in 2D
#set gaussian ceters and covariances in 2D
means = np.array([[0.5, 0.0],
[0, 0],
[-0.5, -0.5],
[-0.8, 0.3]])
covs = np.array([np.diag([0.01, 0.01]),
np.diag([0.025, 0.01]),
np.diag([0.01, 0.025]),
np.diag([0.01, 0.01])])
elif D == 3:
# set gaussian ceters and covariances in 3D
# set gaussian ceters and covariances in 3D
means = np.array([[0.5, 0.0, 0.0],
[0.0, 0.0, 0.0],
[-0.5, -0.5, -0.5],
[-0.8, 0.3, 0.4]])
covs = np.array([np.diag([0.01, 0.01, 0.03]),
np.diag([0.08, 0.01, 0.01]),
np.diag([0.01, 0.05, 0.01]),
np.diag([0.03, 0.07, 0.01])])
n_gaussians = means.shape[0]
points = []
for i in range(len(means)):
x = np.random.multivariate_normal(means[i], covs[i], N )
points.append(x)
points = np.concatenate(points)
# Generate a normally distributed data set for training
# Generate a normally distributed data set for training
X = 0.3 * np.random.randn(100, 2)
X_train_normal = np.r_[X + 2, X - 2]
# Generating outliers for training
X_train_outliers = np.random.uniform(low=-4, high=4, size=(20, 2))
# Generating a normally distributed dataset for testing
X = 0.3 * np.random.randn(20, 2)
X_test_normal = np.r_[X + 2, X - 2]
# Generating outliers for testing
X_test_outliers = np.random.uniform(low=-4, high=4, size=(20, 2))
#Plotting and visualising the data points
plt.figure(figsize=(10,7.5))
plt.scatter(X_train_normal[:,0],X_train_normal[:,1],label='X_train_normal')
plt.scatter(X_train_outliers[:,0],X_train_outliers[:,1],label='X_train_outliers')
plt.scatter(X_test_normal[:,0],X_test_normal[:,1],label='X_test_normal')
plt.scatter(X_test_outliers[:,0],X_test_outliers[:,1],label='X_test_outliers')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.legend()
plt.show()
#Now we will append the normal points and outliers- train and test separately
X_train=np.append(X_train_normal,X_train_outliers,axis=0)
X_test=np.append(X_test_normal,X_test_outliers,axis=0)
#Training with isolation forest algorithm
clf = IsolationForest(random_state=0, contamination=0.1)
clf.fit(X_train)
#Now we predict the anomaly state for data
y_train=clf.predict(X_train)
y_test=clf.predict(X_test)
# Now we will plot and visualize how good our algorithm works for training data
# y_train(the state) will mark the colors accordingly
plt.figure(figsize=(10, 7.5))
plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train)
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
# This is to set the legend appropriately
legend_elements = [Line2D([], [], marker='o', color='yellow', label='Marked as normal', linestyle='None'),
Line2D([], [], marker='o', color='indigo', label='Marked as anomaly', linestyle='None')]
plt.legend(handles=legend_elements)
plt.show()
# Now we will do the same for the test data
plt.figure(figsize=(10, 7.5))
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test)
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
legend_elements = [Line2D([], [], marker='o', color='yellow', label='Marked as normal', linestyle='None'),
Line2D([], [], marker='o', color='indigo', label='Marked as anomaly', linestyle='None')]
plt.legend(handles=legend_elements)
plt.show()
# example of loading the fashion_mnist dataset
from keras.datasets.fashion_mnist import load_data
# load the images into memory
(trainX, trainy), (testX, testy) = load_data()
# summarize the shape of the dataset
print('Train', trainX.shape, trainy.shape)
print('Test', testX.shape, testy.shape)
# example of loading the CIFAR-10 dataset
from keras.datasets.cifar10 import load_data
# we load the images into the memory
(trainX, trainy), (testX, testy) = load_data()
# summarize the shape of the dataset
print('Train', trainX.shape, trainy.shape)
print('Test', testX.shape, testy.shape)
#import matplotlib.pyplot as plt
import matplotlib.pyplot as pyplot
# plot raw pixel data
pyplot.imshow(trainX[49])
pyplot.show()
# example of loading and plotting the cifar10 dataset
from keras.datasets.cifar10 import load_data
from matplotlib import pyplot
# load the images into memory
(trainX, trainy), (testX, testy) = load_data()
# plot images from the training dataset
for i in range(49):
# define subplot
pyplot.subplot(7, 7, 1 + i)
pyplot.axis('off') # turn off axis
pyplot.imshow(trainX[i]) # plot raw pixel data
pyplot.show()
# example of defining the discriminator model
# example of defining the discriminator model
from keras.models import Sequential
from keras.optimizers import Adam
from keras.layers import Dense
from keras.layers import Conv2D
from keras.layers import Flatten
from keras.layers import Dropout
from keras.layers import LeakyReLU
from keras.utils.vis_utils import plot_model
# define the standalone discriminator model
def define_discriminator(in_shape=(32, 32, 3)):
model = Sequential()
# normal
model.add(Conv2D(64, (3, 3), padding='same', input_shape=in_shape))
model.add(LeakyReLU(alpha=0.2))
# downsample
model.add(Conv2D(128, (3, 3), strides=(2, 2), padding='same'))
model.add(LeakyReLU(alpha=0.2))
# downsample
model.add(Conv2D(128, (3, 3), strides=(2, 2), padding='same'))
model.add(LeakyReLU(alpha=0.2))
# downsample
model.add(Conv2D(256, (3, 3), strides=(2, 2), padding='same'))
model.add(LeakyReLU(alpha=0.2))
# classifier
model.add(Flatten())
model.add(Dropout(0.4))
model.add(Dense(1, activation='sigmoid'))
# compile model
opt = Adam(lr=0.0002, beta_1=0.5)
model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['accuracy'])
return model
# define the model
model = define_discriminator()
# summarize the model
model.summary()
# plot the model
plot_model(model, to_file='discriminator_plot.png', show_shapes=True, show_layer_names=True)
# https://machinelearningmastery.com/how-to-develop-a-generative-adversarial-network-for-a-cifar-10-small-object-photographs-from-scratch/
# we use: https://machinelearningmastery.com/how-to-develop-a-generative-adversarial-network-for-a-cifar-10-small-object-photographs-from-scratch/
# load cifar10 dataset
(trainX, _), (_, _) = load_data()
# convert from unsigned ints to floats
X = trainX.astype('float32')
# scale from [0,255] to [-1,1]
X = (X - 127.5) / 127.5
# load and prepare cifar10 training images
def load_real_samples():
(trainX, _), (_, _) = load_data()
# convert from unsigned ints to floats
X = trainX.astype("float32")
# scale from [0,255] to [-1,1]
X = (X - 127.5) / 127.5
return X
# select real samples
def generate_real_samples(dataset, n_samples):
# choose random instances
# choose random instances
ix = randint(0, dataset.shape[0], n_samples)
# retrieve selected images
X = dataset[ix]
# generate 'real' class labels (1)
y = ones((n_samples, 1))
return X, y
# generate n fake samples with class labels
def generate_fake_samples(n_samples):
# generate uniform random numbers in [0,1]
X = rand(32 * 32 * 3 * n_samples)
# update to have the range [-1, 1]
X = -1 + X * 2
# reshape into a batch of color images
X = X.reshape((n_samples, 32, 32, 3))
# generate 'fake' class labels (0)
y = zeros((n_samples, 1))
return X, y
# example of training the discriminator model on real and random cifar10 images
from numpy import expand_dims
from numpy import ones
from numpy import zeros
from numpy.random import rand
from numpy.random import randint
from keras.datasets.cifar10 import load_data
from keras.optimizers import Adam
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Conv2D
from keras.layers import Flatten
from keras.layers import Dropout
from keras.layers import LeakyReLU
# train the discriminator model
#def train_discriminator(model, dataset, n_iter=20, n_batch=128):
#def train_discriminator(model, dataset, n_iter=20, n_batch=128):
def train_discriminator(model, dataset, n_iter=8, n_batch=128):
half_batch = int(n_batch / 2)
# manually enumerate epochs
for i in range(n_iter):
# get randomly selected 'real' samples
X_real, y_real = generate_real_samples(dataset, half_batch)
# update discriminator on real samples
_, real_acc = model.train_on_batch(X_real, y_real)
# generate 'fake' examples
X_fake, y_fake = generate_fake_samples(half_batch)
# update discriminator on fake samples
_, fake_acc = model.train_on_batch(X_fake, y_fake)
# summarize the performance
print('>%d real=%.0f%% fake=%.0f%%' % (i+1, real_acc*100, fake_acc*100))
# define the discriminator model
model = define_discriminator()
# load image data
dataset = load_real_samples()
# fit the model
train_discriminator(model, dataset)
# example of defining the generator model
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Reshape
from keras.layers import Conv2D
from keras.layers import Conv2DTranspose
from keras.layers import LeakyReLU
from keras.utils.vis_utils import plot_model
# define the standalone generator model
def define_generator(latent_dim):
model = Sequential()
# foundation for 4x4 image
n_nodes = 256 * 4 * 4
model.add(Dense(n_nodes, input_dim=latent_dim))
model.add(LeakyReLU(alpha=0.2))
model.add(Reshape((4, 4, 256)))
# upsample to 8x8
model.add(Conv2DTranspose(128, (4, 4), strides=(2, 2), padding='same'))
model.add(LeakyReLU(alpha=0.2))
# upsample to 16x16
model.add(Conv2DTranspose(128, (4, 4), strides=(2, 2), padding='same'))
model.add(LeakyReLU(alpha=0.2))
# upsample to 32x32
model.add(Conv2DTranspose(128, (4, 4), strides=(2, 2), padding='same'))
model.add(LeakyReLU(alpha=0.2))
# output layer
model.add(Conv2D(3, (3, 3), activation='tanh', padding='same'))
return model
# define the size of the latent space
latent_dim = 100
# define the generator model
model = define_generator(latent_dim)
# summarize the model
model.summary()
# plot the model
plot_model(model, to_file='generator_plot.png', show_shapes=True, show_layer_names=True)
from numpy.random import randn # we use randn
# https://towardsdatascience.com/anomaly-detection-for-dummies-15f148e559c1
# generate points in latent space as input for the generator
def generate_latent_points(latent_dim, n_samples):
# generate points in the latent space
x_input = randn(latent_dim * n_samples)
# reshape into a batch of inputs for the network
x_input = x_input.reshape(n_samples, latent_dim)
return x_input
# use the generator to generate n fake examples, with class labels
def generate_fake_samples(g_model, latent_dim, n_samples):
# generate points in latent space
x_input = generate_latent_points(latent_dim, n_samples)
# predict outputs
X = g_model.predict(x_input)
# create 'fake' class labels (0)
y = zeros((n_samples, 1))
return X, y
# size of the latent space
latent_dim = 100
# define the discriminator model
model = define_generator(latent_dim)
# generate samples
n_samples = 49
X, _ = generate_fake_samples(model, latent_dim, n_samples)
# scale pixel values from [-1,1] to [0,1]
X = (X + 1) / 2.0
# plot the generated samples
for i in range(n_samples):
# define subplot
pyplot.subplot(7, 7, 1 + i)
# turn off axis labels
pyplot.axis('off')
# plot single image
pyplot.imshow(X[i])
# show the figure
pyplot.show()
# define the combined generator and discriminator model, for updating the generator
def define_gan(g_model, d_model):
# make weights in the discriminator not trainable
d_model.trainable = False
# connect them
model = Sequential()
# add generator
model.add(g_model)
# add the discriminator
model.add(d_model)
# compile model
opt = Adam(lr=0.0002, beta_1=0.5)
model.compile(loss='binary_crossentropy', optimizer=opt)
return model
# size of the latent space
latent_dim = 100
d_model = define_discriminator() # create the discriminator
g_model = define_generator(latent_dim) # create the generator
gan_model = define_gan(g_model, d_model) # create the GAN model
# summarize gan model
gan_model.summary()
# plot gan model
plot_model(gan_model, to_file='gan_plot.png', show_shapes=True, show_layer_names=True)
# load and prepare cifar10 training images
def load_real_samples():
# load cifar10 dataset
(trainX, _), (_, _) = load_data()
# convert from unsigned ints to floats
X = trainX.astype('float32')
# scale from [0,255] to [-1,1]
X = (X - 127.5) / 127.5
return X
# select real samples
def generate_real_samples(dataset, n_samples):
# choose random instances
ix = randint(0, dataset.shape[0], n_samples)
# retrieve selected images
X = dataset[ix]
# generate 'real' class labels (1)
y = ones((n_samples, 1))
return X, y
# generate points in latent space as input for the generator
def generate_latent_points(latent_dim, n_samples):
# generate points in the latent space
x_input = randn(latent_dim * n_samples)
# reshape into a batch of inputs for the network
x_input = x_input.reshape(n_samples, latent_dim)
return x_input
# use the generator to generate n fake examples, with class labels
def generate_fake_samples(g_model, latent_dim, n_samples):
# generate points in latent space
x_input = generate_latent_points(latent_dim, n_samples)
# predict outputs
X = g_model.predict(x_input)
# create 'fake' class labels (0)
y = zeros((n_samples, 1))
return X, y
# create and save a plot of generated images
def save_plot(examples, epoch, n=7):
# scale from [-1,1] to [0,1]
examples = (examples + 1) / 2.0
# plot images
for i in range(n * n):
# define subplot
pyplot.subplot(n, n, 1 + i)
# turn off axis
pyplot.axis('off')
# plot raw pixel data
pyplot.imshow(examples[i])
# save plot to file
filename = 'generated_plot_e%03d.png' % (epoch + 1)
pyplot.savefig(filename)
pyplot.close()
# evaluate the discriminator, plot generated images, save generator model
def summarize_performance(epoch, g_model, d_model, dataset, latent_dim, n_samples=150):
# prepare real samples
X_real, y_real = generate_real_samples(dataset, n_samples)
# evaluate discriminator on real examples
_, acc_real = d_model.evaluate(X_real, y_real, verbose=0)
# prepare fake examples
x_fake, y_fake = generate_fake_samples(g_model, latent_dim, n_samples)
# evaluate discriminator on fake examples
_, acc_fake = d_model.evaluate(x_fake, y_fake, verbose=0)
# summarize discriminator performance
print('>Accuracy real: %.0f%%, fake: %.0f%%' % (acc_real * 100, acc_fake * 100))
# save plot
save_plot(x_fake, epoch)
# save the generator model tile file
filename = 'generator_model_%03d.h5' % (epoch + 1)
g_model.save(filename)
# train the generator and discriminator
#def train(g_model, d_model, gan_model, dataset, latent_dim, n_epochs=200, n_batch=128):
#def train(g_model, d_model, gan_model, dataset, latent_dim, n_epochs=200, n_batch=128):
def train(g_model, d_model, gan_model, dataset, latent_dim, n_epochs=8, n_batch=128):
#bat_per_epo = int(dataset.shape[0] / n_batch)
bat_per_epo = int(dataset.shape[0] / n_batch)
half_batch = int(n_batch / 2)
for i in range(n_epochs): # manually enumerate epochs
for j in range(bat_per_epo): # enumerate batches over the training set
X_real, y_real = generate_real_samples(dataset, half_batch) # get randomly selected 'real' samples
# update discriminator model weights
d_loss1, _ = d_model.train_on_batch(X_real, y_real)
# generate 'fake' examples
X_fake, y_fake = generate_fake_samples(g_model, latent_dim, half_batch)
# update discriminator model weights
d_loss2, _ = d_model.train_on_batch(X_fake, y_fake)
# prepare points in latent space as input for the generator
X_gan = generate_latent_points(latent_dim, n_batch)
# create inverted labels for the fake samples
y_gan = ones((n_batch, 1))
# update the generator via the discriminator's error
g_loss = gan_model.train_on_batch(X_gan, y_gan)
# summarize loss on this batch
print('>%d, %d/%d, d1=%.3f, d2=%.3f g=%.3f' %
(i + 1, j + 1, bat_per_epo, d_loss1, d_loss2, g_loss))
# evaluate the model performance, sometimes
if (i + 1) % 10 == 0:
summarize_performance(i, g_model, d_model, dataset, latent_dim)
# size of the latent space
latent_dim = 100
d_model = define_discriminator() # create the discriminator
g_model = define_generator(latent_dim) # create the generator
gan_model = define_gan(g_model, d_model) # create the GAN model
# load image data
dataset = load_real_samples()
# train model
train(g_model, d_model, gan_model, dataset, latent_dim)
# example of loading the generator model and generating images
from keras.models import load_model
from matplotlib import pyplot
from numpy.random import randn
# generate points in latent space as input for the generator
def generate_latent_points(latent_dim, n_samples):
# generate points in the latent space
x_input = randn(latent_dim * n_samples)
# reshape into a batch of inputs for the network
x_input = x_input.reshape(n_samples, latent_dim)
return x_input
# create and save a plot of generated images
def save_plot(examples, n):
# plot images
for i in range(n * n):
# define subplot
pyplot.subplot(n, n, 1 + i)
# turn off axis
pyplot.axis('off')
# plot raw pixel data
pyplot.imshow(examples[i, :, :])
pyplot.show()
# load model
model = load_model('generator_model_200.h5')
# generate images
latent_points = generate_latent_points(100, 100)
# generate images
X = model.predict(latent_points)
X = (X + 1) / 2.0 # scale from [-1,1] to [0,1]
save_plot(X, 10) # plot the result
# an example of generating an image for a specific point in the latent space
# https://machinelearningmastery.com/how-to-develop-a-generative-adversarial-network-for-a-cifar-10-small-object-photographs-from-scratch/
# use: https://machinelearningmastery.com/how-to-develop-a-generative-adversarial-network-for-a-cifar-10-small-object-photographs-from-scratch/
from numpy import asarray
from matplotlib import pyplot
from keras.models import load_model
# load model
model = load_model('generator_model_200.h5')
# all 0s
vector = asarray([[0.75 for _ in range(100)]])
# generate image
X = model.predict(vector)
# scale from [-1,1] to [0,1]
X = (X + 1) / 2.0
# plot the result
pyplot.imshow(X[0, :, :])
pyplot.show()
# image shape
HEIGHT = 96
WIDTH = 96
DEPTH = 3
# size of a single image in bytes
SIZE = HEIGHT * WIDTH * DEPTH
# path to the directory with the data
DATA_DIR = './data'
# url of the binary data
DATA_URL = 'http://ai.stanford.edu/~acoates/stl10/stl10_binary.tar.gz'
# use: https://cs.stanford.edu/~acoates/stl10/
# path to the binary train file with image data
DATA_PATH = './data/stl10_binary/train_X.bin'
# path to the binary train file with labels
LABEL_PATH = './data/stl10_binary/train_y.bin'
def read_labels(path_to_labels):
"""
:param path_to_labels: path to the binary file containing labels from the STL-10 dataset
:return: an array containing the labels
"""
with open(path_to_labels, 'rb') as f:
labels = np.fromfile(f, dtype=np.uint8)
return labels
def read_all_images(path_to_data):
"""
:param path_to_data: the file containing the binary images from the STL-10 dataset
:return: an array containing all the images
"""
with open(path_to_data, 'rb') as f:
# read whole file in uint8 chunks
# read whole file in uint8 chunks
everything = np.fromfile(f, dtype=np.uint8)
# We force the data into 3x96x96 chunks, since the images are stored
# in "column-major order", meaning that "the first 96*96 values are
# the red channel, the next 96*96 are green, and the last are blue."
# The -1 is since the size of the pictures depends on the input file,
# and this way numpy determines the size on its own.
# We force the data into 3x96x96 chunks.
images = np.reshape(everything, (-1, 3, 96, 96))
# Now transpose the images into a standard image format
# readable by, for example, matplotlib.imshow
# You might want to comment this line or reverse the shuffle
# if you will use a learning algorithm like CNN, since they like
# their channels separated.
# Transpose the images
images = np.transpose(images, (0, 3, 2, 1))
return images
def read_single_image(image_file):
"""
CAREFUL! - this method uses a file as input instead of the path - so the
position of the reader will be remembered outside of context of this method.
:param image_file: the open file containing the images
:return: a single image
"""
# read a single image, count determines the number of uint8's to read
image = np.fromfile(image_file, dtype=np.uint8, count=SIZE)
# force into image matrix
image = np.reshape(image, (3, 96, 96))
# transpose to standard format
# You might want to comment this line or reverse the shuffle
# if you will use a learning algorithm like CNN, since they like
# their channels separated.
# transpose to standard format
image = np.transpose(image, (2, 1, 0))
return image
def plot_image(image):
"""
:param image: the image to be plotted in a 3-D matrix format
"""
plt.imshow(image)
plt.show()
def save_image(image, name):
imsave("%s.png" % name, image, format="png")
def download_and_extract():
"""
Download and extract the STL-10 dataset
"""
dest_directory = DATA_DIR
if not os.path.exists(dest_directory):
os.makedirs(dest_directory)
filename = DATA_URL.split('/')[-1]
filepath = os.path.join(dest_directory, filename)
if not os.path.exists(filepath):
def _progress(count, block_size, total_size):
sys.stdout.write('\rDownloading %s %.2f%%' % (filename,
float(count * block_size) / float(total_size) * 100.0))
sys.stdout.flush()
filepath, _ = urllib.urlretrieve(DATA_URL, filepath, reporthook=_progress)
print('Downloaded', filename)
tarfile.open(filepath, 'r:gz').extractall(dest_directory)
def save_images(images, labels):
#print("Saving images to disk")
#print("Saving images to disk")
print("Save images to disk")
i = 0
for image in images:
label = labels[i]
directory = './img/' + str(label) + '/'
try:
os.makedirs(directory, exist_ok=True)
except OSError as exc:
if exc.errno == errno.EEXIST: