-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathprogram44_BackpropGANs.py
5767 lines (4060 loc) · 183 KB
/
program44_BackpropGANs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import print_function
from __future__ import absolute_import
import sys
import sklearn
import numpy as np
import pandas as pd
import numpy.random
import scipy.stats as ss
import os, tarfile, errno
import matplotlib.pyplot as plt
import tensorflow as tf
print(tf.__version__) # 1.14.0
import matplotlib.pyplot as plt
import seaborn as sns; sns.set()
# https://medium.com/startup-grind/fueling-the-ai-gold-rush-7ae438505bc2
# https://www.analyticsinsight.net/best-computer-vision-courses-to-master-in-2019/
# UCI data: https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
# Human Activity Recognition Using Smartphones Data Set, archive.ics.uci.edu, Human Activity Recognition
# https://www.cfasociety.org/cleveland/Lists/Events%20Calendar/Attachments/1045/BIG-Data_AI-JPMmay2017.pdf
if sys.version_info >= (3, 0, 0):
import urllib.request as urllib
else:
import urllib
try:
from imageio import imsave
except:
from scipy.misc import imsave
print(sys.version_info) # we use: sys.version_info
from sklearn.ensemble import IsolationForest # Import IsolationForest module
# use: https://towardsdatascience.com/anomaly-detection-for-dummies-15f148e559c1
# https://www.analyticsvidhya.com/blog/2019/09/introduction-to-pytorch-from-scratch/
import cv2
import tensorflow as tf
import scipy.stats as ss
from sklearn import metrics
from sklearn.mixture import GaussianMixture
# we use: https://skymind.ai/wiki/generative-adversarial-network-gan
# use: https://medium.com/startup-grind/fueling-the-ai-gold-rush-7ae438505bc2
# https://www.analyticsinsight.net/best-computer-vision-courses-to-master-in-2019/
# www.cfasociety.org/cleveland/Lists/Events%20Calendar/Attachments/1045/BIG-Data_AI-JPMmay2017.pdf
import scipy
import matplotlib
from scipy.misc import imshow
from scipy import ndimage, misc
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from gluoncv import data, utils
from gluoncv.data import ImageNet
from mxnet.gluon.data import DataLoader
from mxnet.gluon.data.vision import transforms
import scipy.io as sio
import torch # use pytorch
from torchvision import datasets
from matplotlib import pyplot as plt
import torchvision.transforms as transforms
#import renom as rm
from copy import deepcopy
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from keras.layers import Dense
from keras.datasets import mnist
from keras.models import Sequential
# https://www.renom.jp/notebooks/tutorial/generative-model/anoGAN/notebook.html
# use: https://www.renom.jp/notebooks/tutorial/generative-model/anoGAN/notebook.html
import external.renom as rm
#from renom.optimizer import Adam
#from renom.cuda import set_cuda_active
from external.renom.optimizer import Adam
from external.renom.cuda import set_cuda_active
# MNIST: Keras or scikit-learn embedded datasets
# Keras: from keras.datasets import mnist
ds = tf.contrib.distributions
from keras.layers import Reshape
from keras.optimizers import Adam
from keras.models import Sequential
from keras.layers import Conv2DTranspose
from keras.utils.vis_utils import plot_model
from keras.models import Model
from keras.layers import Conv2D
from keras.layers import Flatten
from keras.layers import Input, Dense
from keras import backend as K
from keras.layers import Dropout
from keras.layers import LeakyReLU
from keras.utils.vis_utils import plot_model
from keras.layers.core import Activation
from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
from keras.layers.normalization import BatchNormalization
from sklearn import datasets
from sklearn import preprocessing
import torch.nn as nn # Use torch nn
torch.manual_seed(2) # Set manual seed
inputs = np.array([[73, 67, 43], [91, 88, 64], [87, 134, 58], [102, 43, 37], [69, 96, 70]], dtype='float32')
targets = np.array([[56, 70], [81, 101], [119, 133], [22, 37], [103, 119]], dtype='float32')
from torch.utils.data import DataLoader
from torch.utils.data import TensorDataset
batch_size = 5
inputs = torch.from_numpy(inputs)
targets = torch.from_numpy(targets)
train_ds = TensorDataset(inputs, targets)
train_dl = DataLoader(train_ds, batch_size, shuffle=True)
model = nn.Linear(3, 2)
print(list(model.parameters()))
print('')
print(model.weight)
print(model.bias)
print('')
import torch.nn.functional as F
loss_fn = F.mse_loss
loss = loss_fn(model(inputs), targets)
opt = torch.optim.SGD(model.parameters(), lr=1e-5)
def fit21(num_epochs, model, loss_fn, opt):
for epoch in range(num_epochs):
for xb, yb in train_dl:
loss = loss_fn(model(xb), yb)
loss.backward()
opt.step()
opt.zero_grad()
if (epoch+1) % 10 == 0:
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))
fit21(100, model, loss_fn, opt)
loss = loss_fn(model(inputs), targets)
print(loss)
print('')
inputs = np.array([[73, 67, 43], [91, 88, 64], [87, 134, 58],
[102, 43, 37], [69, 96, 70]], dtype='float32')
targets = np.array([[56, 70], [81, 101], [119, 133],
[22, 37], [103, 119]], dtype='float32')
inputs = torch.from_numpy(inputs)
targets = torch.from_numpy(targets)
# randn is for Gaussian with mean=0 and std=1
w = torch.randn(2, 3, requires_grad=True)
b = torch.randn(2, requires_grad=True)
def model(x):
return x @ w.t() + b
# matrix multiplication @
# .t() transpose operation
def lossMain(t1, t2):
diff = t1 - t2
# .numel() number of elements
return torch.sum(diff*diff) / diff.numel()
loss21 = lossMain(model(inputs), targets)
print(loss21)
loss21.backward()
w.grad.zero_()
b.grad.zero_()
loss21 = lossMain(model(inputs), targets)
loss21.backward()
with torch.no_grad():
w -= w.grad * 1e-5
b -= b.grad * 1e-5
w.grad.zero_()
b.grad.zero_()
for i in range(100):
loss21 = lossMain(model(inputs), targets)
loss21.backward()
with torch.no_grad():
w -= w.grad * 1e-5
b -= b.grad * 1e-5
w.grad.zero_()
b.grad.zero_()
loss21 = lossMain(model(inputs), targets)
print(loss21)
print('')
iris = datasets.load_iris()
X = torch.tensor(preprocessing.normalize(iris.data[:, :2]), dtype=torch.float)
y = torch.tensor(iris.target.reshape(-1, 1), dtype=torch.float)
X = X[:y[y < 2].size()[0]]
y = y[:y[y < 2].size()[0]]
print(X.size())
print(y.size())
print('')
class FNN(nn.Module):
def __init__(self, ):
super().__init__()
# Dimensions for input, hidden and output
self.input_dim = 2
self.hidden_dim = 32
self.output_dim = 1
# Learning rate definition
self.learning_rate = 0.001
# Our parameters (weights)
# w1: 2 x 32
self.w1 = torch.randn(self.input_dim, self.hidden_dim)
# w2: 32 x 1
self.w2 = torch.randn(self.hidden_dim, self.output_dim)
def sigmoid(self, s):
return 1 / (1 + torch.exp(-s))
def sigmoid_first_order_derivative(self, s):
return s * (1 - s)
# Forward propagation
def forward(self, X):
# First linear layer
self.y1 = torch.matmul(X, self.w1) # 3 X 3 ".dot" does not broadcast in PyTorch
# First non-linearity
self.y2 = self.sigmoid(self.y1)
# Second linear layer
self.y3 = torch.matmul(self.y2, self.w2)
# Second non-linearity
y4 = self.sigmoid(self.y3)
return y4
# Backward propagation
def backward(self, X, l, y4):
# Derivative of binary cross entropy cost w.r.t. final output y4
self.dC_dy4 = y4 - l
'''
Gradients for w2: partial derivative of cost w.r.t. w2
dC/dw2
'''
self.dy4_dy3 = self.sigmoid_first_order_derivative(y4)
self.dy3_dw2 = self.y2
# Y4 delta: dC_dy4 dy4_dy3
self.y4_delta = self.dC_dy4 * self.dy4_dy3
# This is our gradients for w1: dC_dy4 dy4_dy3 dy3_dw2
self.dC_dw2 = torch.matmul(torch.t(self.dy3_dw2), self.y4_delta)
'''
Gradients for w1: partial derivative of cost w.r.t w1
dC/dw1
'''
self.dy3_dy2 = self.w2
self.dy2_dy1 = self.sigmoid_first_order_derivative(self.y2)
# Y2 delta: (dC_dy4 dy4_dy3) dy3_dy2 dy2_dy1
self.y2_delta = torch.matmul(self.y4_delta, torch.t(self.dy3_dy2)) * self.dy2_dy1
# Gradients for w1: (dC_dy4 dy4_dy3) dy3_dy2 dy2_dy1 dy1_dw1
self.dC_dw1 = torch.matmul(torch.t(X), self.y2_delta)
# Gradient descent on the weights from our 2 linear layers
self.w1 -= self.learning_rate * self.dC_dw1
self.w2 -= self.learning_rate * self.dC_dw2
def train(self, X, l):
# Forward propagation
y4 = self.forward(X)
# Backward propagation and gradient descent
self.backward(X, l, y4)
# Instantiate our model class and assign it to our model object
model = FNN()
# Loss list for plotting of loss behaviour
loss_lst = []
# Number of times we want our FNN to look at all 100 samples we have, 100 implies looking through 100x
num_epochs = 101
# Train our model with 100 epochs
for epoch in range(num_epochs):
# Get our predictions
y_hat = model(X)
# Cross entropy loss, remember this can never be negative by nature of the equation
# But it does not mean the loss can't be negative for other loss functions
cross_entropy_loss = -(y * torch.log(y_hat) + (1 - y) * torch.log(1 - y_hat))
# We have to take cross entropy loss over all our samples, 100 in this 2-class iris dataset
mean_cross_entropy_loss = torch.mean(cross_entropy_loss).detach().item()
# Print our mean cross entropy loss
if epoch % 20 == 0:
print('Epoch {} | Loss: {}'.format(epoch, mean_cross_entropy_loss))
loss_lst.append(mean_cross_entropy_loss)
# (1) Forward propagation: to get our predictions to pass to our cross entropy loss function
# (2) Back propagation: get our partial derivatives w.r.t. parameters (gradients)
# (3) Gradient Descent: update our weights with our gradients
model.train(X, y)
class GAN():
def __init__(self):
self.img_rows = 28
self.img_cols = 28
self.channels = 1
self.img_shape = (self.img_rows, self.img_cols, self.channels)
optimizer = Adam(0.0002, 0.5)
# Build and compile the discriminator
self.discriminator = self.build_discriminator()
self.discriminator.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
# Build and compile the generator
self.generator = self.build_generator()
self.generator.compile(loss='binary_crossentropy', optimizer=optimizer)
# The generator takes noise as input and generated images
z = Input(shape=(100,))
img = self.generator(z)
# For the combined model we will only train the generator
self.discriminator.trainable = False
# The valid takes generated images as input and determines validity
valid = self.discriminator(img)
# The combined model (stacked generator and discriminator) takes
# noise as input => generates images => determines validity
self.combined = Model(z, valid)
self.combined.compile(loss='binary_crossentropy', optimizer=optimizer)
def build_generator(self):
noise_shape = (100,)
model = Sequential()
model.add(Dense(256, input_shape=noise_shape))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(1024))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(np.prod(self.img_shape), activation='tanh'))
model.add(Reshape(self.img_shape))
model.summary()
noise = Input(shape=noise_shape)
img = model(noise)
return Model(noise, img)
def build_discriminator(self):
img_shape = (self.img_rows, self.img_cols, self.channels)
model = Sequential()
model.add(Flatten(input_shape=img_shape))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(256))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(1, activation='sigmoid'))
model.summary()
img = Input(shape=img_shape)
validity = model(img)
return Model(img, validity)
def train(self, epochs, batch_size=128, save_interval=50):
(X_train, _), (_, _) = mnist.load_data() # Load the dataset
X_train = (X_train.astype(np.float32) - 127.5) / 127.5
X_train = np.expand_dims(X_train, axis=3) # Rescale -1 to 1
half_batch = int(batch_size / 2)
for epoch in range(epochs):
# Train the Discriminator
# Select a random half batch of images
idx = np.random.randint(0, X_train.shape[0], half_batch)
imgs = X_train[idx]
noise = np.random.normal(0, 1, (half_batch, 100))
# Generate a half batch of new images
gen_imgs = self.generator.predict(noise)
# Train the Discriminator
d_loss_real = self.discriminator.train_on_batch(imgs, np.ones((half_batch, 1)))
d_loss_fake = self.discriminator.train_on_batch(gen_imgs, np.zeros((half_batch, 1)))
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
# Train the Generator
noise = np.random.normal(0, 1, (batch_size, 100))
# The generator wants the discriminator to label
# the generated samples as valid (ones)
valid_y = np.array([1] * batch_size)
# Train the Generator
g_loss = self.combined.train_on_batch(noise, valid_y)
# Plot the progress
print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss))
# If at save interval => save generated image samples
if epoch % save_interval == 0:
self.save_imgs(epoch)
def save_imgs(self, epoch):
r, c = 5, 5
noise = np.random.normal(0, 1, (r * c, 100))
gen_imgs = self.generator.predict(noise)
# Re-scale images between 0 and 1
gen_imgs = 0.5 * gen_imgs + 0.5
fig, axs = plt.subplots(r, c)
cnt = 0
for i in range(r):
for j in range(c):
axs[i,j].imshow(gen_imgs[cnt, :,:,0], cmap='gray')
axs[i,j].axis('off')
cnt += 1
#fig.savefig("gan/images/mnist_%d.png" % epoch)
fig.savefig("/Users/dionelisnikolaos/Downloads/mnist_%d.png" % epoch)
#plt.pause(1)
plt.close()
if __name__ == '__main__':
gan = GAN()
#gan.train(epochs=30000, batch_size=32, save_interval=200)
gan.train(epochs=100, batch_size=32, save_interval=50)
from keras.optimizers import adam
from keras.models import Sequential
from keras.callbacks import TensorBoard
from keras.callbacks import ModelCheckpoint
from keras import models
from keras import layers
from keras.utils import to_categorical
from keras.layers import Dense, Dropout, LSTM, BatchNormalization
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
network = models.Sequential()
network.add(layers.Dense(784, activation='relu', input_shape=(28 * 28,)))
network.add(layers.Dense(784, activation='relu', input_shape=(28 * 28,)))
network.add(layers.Dense(10, activation='softmax'))
network.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
train_images = train_images.reshape((60000, 28 * 28))
train_images = train_images.astype('float32') / 255
test_images = test_images.reshape((10000, 28 * 28))
test_images = test_images.astype('float32') / 255
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)
#network.fit(train_images, train_labels, epochs=100, batch_size=128)
network.fit(train_images, train_labels, epochs=5, batch_size=128)
test_loss, test_acc = network.evaluate(test_images, test_labels)
print('test_acc:', test_acc, 'test_loss', test_loss)
def load_minst_data():
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = (x_train.astype(np.float32) - 127.5) / 127.5
x_train = x_train.reshape(60000, 784)
return (x_train, y_train, x_test, y_test)
np.random.seed(10)
random_dim = 100
def get_generator(optimizer):
generator = Sequential()
generator.add(Dense(256, input_dim=random_dim, kernel_initializer=initializers.RandomNormal(stddev=0.02)))
generator.add(LeakyReLU(0.2))
generator.add(Dense(512))
generator.add(LeakyReLU(0.2))
generator.add(Dense(1024))
generator.add(LeakyReLU(0.2))
generator.add(Dense(784, activation='tanh'))
generator.compile(loss='binary_crossentropy', optimizer=optimizer)
return generator
def get_discriminator(optimizer):
discriminator = Sequential()
discriminator.add(Dense(1024, input_dim=784, kernel_initializer=initializers.RandomNormal(stddev=0.02)))
discriminator.add(LeakyReLU(0.2))
discriminator.add(Dropout(0.3))
discriminator.add(Dense(512))
discriminator.add(LeakyReLU(0.2))
discriminator.add(Dropout(0.3))
discriminator.add(Dense(256))
discriminator.add(LeakyReLU(0.2))
discriminator.add(Dropout(0.3))
discriminator.add(Dense(1, activation='sigmoid'))
discriminator.compile(loss='binary_crossentropy', optimizer=optimizer)
return discriminator
from keras.models import Model
from keras.layers import Input, Dense
def get_gan_network(discriminator, random_dim, generator, optimizer):
discriminator.trainable = False
gan_input = Input(shape=(random_dim,))
x = generator(gan_input)
gan_output = discriminator(x)
gan = Model(inputs=gan_input, outputs=gan_output)
gan.compile(loss='binary_crossentropy', optimizer=optimizer)
return gan
from tqdm import tqdm
from keras import optimizers
from keras import initializers
from keras.layers import LeakyReLU
def train(epochs=1, batch_size=128):
x_train, y_train, x_test, y_test = load_minst_data()
batch_count = x_train.shape[0] / batch_size
adam = optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False)
generator = get_generator(adam)
discriminator = get_discriminator(adam)
gan = get_gan_network(discriminator, random_dim, generator, adam)
for e in range(1, epochs + 1):
print('-' * 15, 'Epoch %d' % e, '-' * 15)
for _ in tqdm(range(int(batch_count))):
noise = np.random.normal(0, 1, size=[batch_size, random_dim])
image_batch = x_train[np.random.randint(0, x_train.shape[0], size=batch_size)]
generated_images = generator.predict(noise)
X = np.concatenate([image_batch, generated_images])
y_dis = np.zeros(2 * batch_size)
y_dis[:batch_size] = 0.9
discriminator.trainable = True
discriminator.train_on_batch(X, y_dis)
noise = np.random.normal(0, 1, size=[batch_size, random_dim])
y_gen = np.ones(batch_size)
discriminator.trainable = False
gan.train_on_batch(noise, y_gen)
if e == 1 or e % 20 == 0:
plot_generated_images(e, generator)
train()
#def sample_mog(batch_size, n_mixture=8, std=0.01, radius=1.0):
def sample_mog(batch_size, n_mixture=6, std=0.03, radius=1.0):
#thetas = np.linspace(0, 2 * np.pi, n_mixture)
thetas = np.linspace(0, 2 * np.pi, n_mixture)
xs, ys = radius * np.sin(thetas), radius * np.cos(thetas)
cat = ds.Categorical(tf.zeros(n_mixture))
comps = [ds.MultivariateNormalDiag([xi, yi], [std, std]) for xi, yi in zip(xs.ravel(), ys.ravel())]
data = ds.Mixture(cat, comps)
return data.sample(batch_size)
print(sample_mog(128)) # sample_mog(128)
samplePoints = sample_mog(100)
print(samplePoints)
tf.InteractiveSession()
samplePoints2 = samplePoints.eval()
plt.plot(samplePoints2[:,0], samplePoints2[:,1], 'o')
plt.xlabel('x')
plt.ylabel('y')
plt.savefig('./2DGaussianMixtures.png')
plt.show()
samplePoints = sample_mog(100, 7, 0.03, 0.7)
print(samplePoints)
tf.InteractiveSession()
samplePoints2 = samplePoints.eval()
#plt.plot(samplePoints2[:,0], samplePoints2[:,1])
plt.plot(samplePoints2[:,0], samplePoints2[:,1], 'o')
plt.xlabel('x')
plt.ylabel('y')
plt.savefig('./2DGaussianMixtures2.png')
plt.show()
samplePoints = sample_mog(100, 9, 0.03, 0.7)
print(samplePoints)
tf.InteractiveSession()
samplePoints2 = samplePoints.eval()
#plt.plot(samplePoints2[:,0], samplePoints2[:,1])
plt.plot(samplePoints2[:,0], samplePoints2[:,1], 'o')
plt.xlabel('x')
plt.ylabel('y')
plt.savefig('./2DGaussianMixtures3.png')
plt.show()
samplePoints = sample_mog(100, 4, 0.03, 0.7)
print(samplePoints)
tf.InteractiveSession()
samplePoints2 = samplePoints.eval()
#plt.plot(samplePoints2[:,0], samplePoints2[:,1])
plt.plot(samplePoints2[:,0], samplePoints2[:,1], 'o')
plt.xlabel('x')
plt.ylabel('y')
plt.savefig('./2DGaussianMixtures4.png')
plt.show()
#def sample_mog2(batch_size, n_mixture=8, std=0.01, radius=1.0):
def sample_mog2(batch_size, n_mixture=6, std=0.03, radius=1.0):
#thetas = np.linspace(0, 2 * np.pi, n_mixture)
thetas = np.linspace(0, (radius*n_mixture/2)-1, n_mixture/2)
xs, ys = thetas, np.zeros(thetas.shape)
xs = np.concatenate((xs, thetas))
ys = np.concatenate((ys, np.ones(thetas.shape)))
cat = ds.Categorical(tf.zeros(n_mixture))
comps = [ds.MultivariateNormalDiag([xi, yi], [std, std]) for xi, yi in zip(xs.ravel(), ys.ravel())]
data = ds.Mixture(cat, comps)
return data.sample(batch_size)
#print(sample_mog2(128)) # sample_mog(128)
samplePoints = sample_mog2(100)
print(samplePoints)
tf.InteractiveSession()
samplePoints2 = samplePoints.eval()
#plt.plot(samplePoints2[:,0], samplePoints2[:,1])
plt.plot(samplePoints2[:,0], samplePoints2[:,1], 'o')
plt.xlabel('x')
plt.ylabel('y')
plt.savefig('./GaussianMixtures.png')
plt.show()
#def sample_mog3(batch_size, n_mixture=8, std=0.01, radius=1.0):
def sample_mog3(batch_size, n_mixture=6, std=0.03, radius=1.0):
#thetas = np.linspace(0, 2 * np.pi, n_mixture)
thetas = np.linspace(0, (radius*n_mixture/3)-1, n_mixture/3)
xs, ys = thetas, np.zeros(thetas.shape)
xs = np.concatenate((xs, thetas))
ys = np.concatenate((ys, np.ones(thetas.shape)))
xs = np.concatenate((xs, thetas))
ys = np.concatenate((ys, 2*np.ones(thetas.shape)))
cat = ds.Categorical(tf.zeros(n_mixture))
comps = [ds.MultivariateNormalDiag([xi, yi], [std, std]) for xi, yi in zip(xs.ravel(), ys.ravel())]
data = ds.Mixture(cat, comps)
return data.sample(batch_size)
#print(sample_mog3(128)) # sample_mog(128)
samplePoints = sample_mog3(100)
print(samplePoints)
tf.InteractiveSession()
samplePoints2 = samplePoints.eval()
#plt.plot(samplePoints2[:,0], samplePoints2[:,1])
plt.plot(samplePoints2[:,0], samplePoints2[:,1], 'o')
plt.xlabel('x')
plt.ylabel('y')
plt.savefig('./GaussianMixtures2.png')
plt.show()
samplePoints = sample_mog3(100, 9)
print(samplePoints)
tf.InteractiveSession()
samplePoints2 = samplePoints.eval()
#plt.plot(samplePoints2[:,0], samplePoints2[:,1])
plt.plot(samplePoints2[:,0], samplePoints2[:,1], 'o')
plt.xlabel('x')
plt.ylabel('y')
plt.savefig('./GaussianMixtures3.png')
plt.show()
from keras.datasets.mnist import load_data
(x_train, y_train), (x_test, y_test) = load_data()
# summarize the shape of the dataset
print('MNIST Train', x_train.shape, y_train.shape)
print('MNIST Test', x_test.shape, y_test.shape)
from keras.datasets.fashion_mnist import load_data
(_, _), (x_fashion, y_fashion) = load_data()
# we summarize the shape of the dataset
print('Fashion-MNIST Test', x_fashion.shape, y_fashion.shape)
print('')
num_workers = 0
batch_size = 128
transform = transforms.ToTensor()
train_data = datasets.MNIST(root='data', train=True, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, num_workers=num_workers)
dataiter = iter(train_loader)
images, labels = dataiter.next()
images = images.numpy()
img = np.squeeze(images[0])
fig = plt.figure(figsize = (3,3))
ax = fig.add_subplot(111)
ax.imshow(img, cmap='gray')
plt.show()
# https://runestone.academy/runestone/books/published/pythonds/index.html
# https://github.com/Garima13a/MNIST_GAN/blob/master/MNIST_GAN_Solution.ipynb
import torch.nn as nn
import torch.nn.functional as F
class Discriminator(nn.Module):
def __init__(self, input_size, hidden_dim, output_size):
super(Discriminator, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_dim * 4)
self.fc2 = nn.Linear(hidden_dim * 4, hidden_dim * 2)
self.fc3 = nn.Linear(hidden_dim * 2, hidden_dim)
self.fc4 = nn.Linear(hidden_dim, output_size)
self.dropout = nn.Dropout(0.3) # define dropout layer
def forward(self, x):
x = x.view(-1, 28 * 28)
x = F.leaky_relu(self.fc1(x), 0.2) # (input, negative_slope=0.2)
x = self.dropout(x)
x = F.leaky_relu(self.fc2(x), 0.2)
x = self.dropout(x)
x = F.leaky_relu(self.fc3(x), 0.2)
x = self.dropout(x)
out = self.fc4(x)
return out
class Generator(nn.Module):
def __init__(self, input_size, hidden_dim, output_size):
super(Generator, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim * 2)
self.fc3 = nn.Linear(hidden_dim * 2, hidden_dim * 4)
self.fc4 = nn.Linear(hidden_dim * 4, output_size)
self.dropout = nn.Dropout(0.3)
def forward(self, x):
x = F.leaky_relu(self.fc1(x), 0.2) # (input, negative_slope=0.2)
x = self.dropout(x)
x = F.leaky_relu(self.fc2(x), 0.2)
x = self.dropout(x)
x = F.leaky_relu(self.fc3(x), 0.2)
x = self.dropout(x)
out = F.tanh(self.fc4(x))
return out
# Discriminator
input_size = 784
d_output_size = 1
d_hidden_size = 32
z_size = 100 # For generator
g_output_size = 784
g_hidden_size = 32
# we now instantiate both the discriminator and the generator
D = Discriminator(input_size, d_hidden_size, d_output_size)
G = Generator(z_size, g_hidden_size, g_output_size)
print(D)
print(G)
# we calculate the losses
def real_loss(D_out, smooth=False):
batch_size = D_out.size(0)
if smooth:
labels = torch.ones(batch_size) * 0.9
else:
labels = torch.ones(batch_size) # real labels = 1
criterion = nn.BCEWithLogitsLoss()
loss = criterion(D_out.squeeze(), labels)
return loss
def fake_loss(D_out):
batch_size = D_out.size(0)
labels = torch.zeros(batch_size) # fake labels = 0
criterion = nn.BCEWithLogitsLoss()
loss = criterion(D_out.squeeze(), labels)
return loss
lr = 0.002 # step size
import torch.optim as optim
d_optimizer = optim.Adam(D.parameters(), lr)
g_optimizer = optim.Adam(G.parameters(), lr)
# sklearn.datasets.make_moons(n_samples=100, shuffle=True, noise=None, random_state=None)
# Use: sklearn.datasets.make_moons(n_samples=100, shuffle=True, noise=None, random_state=None)
# Make two interleaving half circles: A toy dataset to visualize clustering and classification algorithms.
# We now use: sklearn.datasets.make_moons(n_samples=100, shuffle=True, noise=None, random_state=None)
# Parameters: n_samples : int, optional (default=100). The total number of points generated.
# shuffle : bool, optional (default=True). Whether to shuffle the samples.
# noise : double or None (default=None). Standard deviation of Gaussian noise added to the data.
# random_state : int, RandomState instance or None (default)
# Determines random number generation for dataset shuffling and noise.
# Returns: X : array of shape [n_samples, 2]. The generated samples.
# y : array of shape [n_samples]. The integer labels (0 or 1) for class membership of each sample.
from sklearn import datasets as dsets
X_moon, y_moon = dsets.make_moons(n_samples=200, shuffle=True, noise=0.09)
print(X_moon.shape)
print(y_moon.shape)
plt.plot(X_moon[:,0], X_moon[:,1], 'o')
plt.xlabel('x')
plt.ylabel('y')
plt.savefig('./HalfMoon_dataset.png')
plt.show()
# sklearn.datasets.make_swiss_roll(n_samples=100, noise=0.0, random_state=None)
X_swiss_roll, y_swiss_roll = dsets.make_swiss_roll(n_samples=200, noise=0.09)
print(X_swiss_roll.shape)
print(y_swiss_roll.shape)
import time
import matplotlib
import matplotlib.pyplot as plt
from sklearn import svm
from sklearn.ensemble import IsolationForest
from sklearn.covariance import EllipticEnvelope
from sklearn.neighbors import LocalOutlierFactor
from sklearn.datasets import make_moons, make_blobs
matplotlib.rcParams['contour.negative_linestyle'] = 'solid'
outliers_fraction = 0.15 # Example settings
n_samples = 300 # Set example settings
n_outliers = int(outliers_fraction * n_samples)
n_inliers = n_samples - n_outliers
# define the anomaly detection methods to be compared
# we define the anomaly detection methods to be compared
anomaly_algorithms = [("Robust covariance", EllipticEnvelope(contamination=outliers_fraction)),
("One-Class SVM", svm.OneClassSVM(nu=outliers_fraction, kernel="rbf", gamma=0.1)),
("Isolation Forest", IsolationForest(contamination=outliers_fraction, random_state=42)),
("Local Outlier Factor", LocalOutlierFactor(n_neighbors=35, contamination=outliers_fraction))]
# we now define the datasets
blobs_params = dict(random_state=0, n_samples=n_inliers, n_features=2)
datasets = [make_blobs(centers=[[0, 0], [0, 0]], cluster_std=0.5, **blobs_params)[0],
make_blobs(centers=[[2, 2], [-2, -2]], cluster_std=[0.5, 0.5], **blobs_params)[0],
make_blobs(centers=[[2, 2], [-2, -2]], cluster_std=[1.5, .3], **blobs_params)[0],
4. * (make_moons(n_samples=n_samples, noise=.05, random_state=0)[0] - np.array([0.5, 0.25])),
14. * (np.random.RandomState(42).rand(n_samples, 2) - 0.5)]
# compare the given classifiers under the given settings
xx, yy = np.meshgrid(np.linspace(-7, 7, 150), np.linspace(-7, 7, 150))
plt.figure(figsize=(len(anomaly_algorithms) * 2 + 3, 12.5))
plt.subplots_adjust(left=.02, right=.98, bottom=.001, top=.96, wspace=.05, hspace=.01)
plot_num = 1
rng = np.random.RandomState(42)
for i_dataset, X in enumerate(datasets): # Add the outliers
X = np.concatenate([X, rng.uniform(low=-6, high=6, size=(n_outliers, 2))], axis=0)