-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdraft-netana-opsawg-nmrg-network-anomaly-semantics-01.xml
849 lines (639 loc) · 29.9 KB
/
draft-netana-opsawg-nmrg-network-anomaly-semantics-01.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
<?xml version="1.0" encoding="US-ASCII"?>
<!DOCTYPE rfc SYSTEM "rfc2629.dtd">
<?rfc toc="yes"?>
<?rfc tocompact="yes"?>
<?rfc tocdepth="2"?>
<?rfc tocindent="yes"?>
<?rfc symrefs="yes"?>
<?rfc sortrefs="yes"?>
<?rfc comments="yes"?>
<?rfc inline="yes"?>
<?rfc compact="yes"?>
<?rfc subcompact="no"?>
<rfc category="exp"
docName="draft-netana-opsawg-nmrg-network-anomaly-semantics-01"
ipr="trust200902">
<front>
<title abbrev="Network Anomaly Semantics">Semantic Metadata Annotation for
Network Anomaly Detection</title>
<author fullname="Thomas Graf" initials="T" surname="Graf">
<organization>Swisscom</organization>
<address>
<postal>
<street>Binzring 17</street>
<city>Zurich</city>
<code>8045</code>
<country>Switzerland</country>
</postal>
<email>[email protected]</email>
</address>
</author>
<author fullname="Wanting Du" initials="W" surname="Du">
<organization>Swisscom</organization>
<address>
<postal>
<street>Binzring 17</street>
<city>Zurich</city>
<code>8045</code>
<country>Switzerland</country>
</postal>
<email>[email protected]</email>
</address>
</author>
<author fullname="Alex Huang Feng" initials="A." surname="Huang Feng">
<organization>INSA-Lyon</organization>
<address>
<postal>
<street/>
<city>Lyon</city>
<region/>
<code/>
<country>France</country>
</postal>
<phone/>
<facsimile/>
<email>[email protected]</email>
<uri/>
</address>
</author>
<author fullname="Vincenzo Riccobene" initials="V." surname="Riccobene">
<organization>Huawei</organization>
<address>
<postal>
<street/>
<city>Dublin</city>
<region/>
<code/>
<country>Ireland</country>
</postal>
<phone/>
<facsimile/>
<email>[email protected]</email>
<uri/>
</address>
</author>
<author fullname="Antonio Roberto" initials="A." surname="Roberto">
<organization>Huawei</organization>
<address>
<postal>
<street/>
<city>Dublin</city>
<region/>
<code/>
<country>Ireland</country>
</postal>
<phone/>
<facsimile/>
<email>[email protected]</email>
<uri/>
</address>
</author>
<date day="04" month="November" year="2023"/>
<abstract>
<t>This document explains why and how semantic metadata annotation helps
to test, validate and compare outlier detection, supports supervised and
semi-supervised machine learning development, enables data exchange
among network operators, vendors and academia and make anomalies for
humans apprehensible. The proposed semantics uniforms the network
anomaly data exchange between and among operators and vendors to improve
their network outlier detection systems.</t>
</abstract>
<note title="Requirements Language">
<t>The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in BCP 14
<xref target="RFC2119"/> <xref target="RFC8174"/> when, and only when,
they appear in all capitals, as shown here.</t>
</note>
</front>
<middle>
<section anchor="Introduction" title="Introduction">
<t><xref target="Ahf23">Network Anomaly Detection Architecture</xref>
provides an overall introduction into how anomaly detection is being
applied into the IP network domain and which operational data is needed.
It approaches the problem space by automating what a Network Engineer
would normally do when verifying a network connectivity service. Monitor
from different network plane perspectives to understand wherever one
network plane affects another negatively.</t>
<t>In order to fine tune outlier detection, the results provided as
analytical data need to be reviewed by a Network Engineer. Keeping the
human out of the monitoring but still involving him in the alert
verification loop.</t>
<t>This document describes what information is needed to understand the
output of the outlier detection for a Network Engineer, but also at the
same time is semantically structured that it can be used for outlier
detection testing by comparing the results systematically and set a
baseline for supervised machine learning which requires labeled
operational data.</t>
</section>
<section anchor="Outlier_Detection" title="Outlier Detection">
<t>Outlier Detection, also known as anomaly detection, describes a
systematic approach to identify rare data points deviating significantly
from the majority. Outliers can manifest as single data point or as a
sequence of data points. There are multiple ways in general to classify
anomalies, but for the context of this draft, the following three
classes are taken into account:</t>
<dl>
<dt>Global outliers:</dt>
<dd>An outlier is considered "global" if its behaviour is outside the
entirety of the considered data set. For example, if the average
dropped packet count is between 0 and 10 per minute and a small
time-window gets the value 1000, this is considered a global
anomaly.</dd>
</dl>
<dl>
<dt>Contextual outliers:</dt>
<dd>An outlier is considered "contextual" if its behaviour is within a
normal (expected) range, but it would not be expected based on some
context. Context can be defined as a function of multiple parameters,
such as time, location, etc. For example, the forwarded packet volume
overnight reaches levels which might be totally normal for the
daytime, but anomalous and unexpected for the nighttime.</dd>
</dl>
<dl>
<dt>Collective outliers:</dt>
<dd>An outlier is considered "collective" if the behaviour of each
single data point that are part of the anomaly are within expected
ranges (so they are not anomalous it either a contextual or a global
sense), but the group, taking all the data points together, is. Note
that the group can be made within a single time series (a sequence of
data points is anomalous) or across multiple metrics (e.g. if looking
at two metrics together, the combined behavior turns out to be
anomalous). In Network Telemetry time series, one way this can
manifest is that the amount of network path and interface state
changes matches the time range when the forwarded packet volume
decreases as a group.</dd>
</dl>
<t>For each outlier a score between 0 and 1 is being calculated. The
higher the value, the higher the probability that the observed data
point is an outlier. <xref target="VAP09">Anomaly detection: A
survey</xref> gives additional details on anomaly detection and its
types.</t>
</section>
<section anchor="Data_Mesh" title="Data Mesh">
<t>The <xref target="Deh22">Data Mesh</xref> Architecture distinguishes
between operational and analytical data. Operational data refers to
collected data from operational systems. While analytical data refers to
insights gained from operational data.</t>
<t>In terms of network observability, semantics of operational network
metrics are defined by IETF and are categorized as described in the
Network Telemetry Framework <xref target="RFC9232"/> in the following
three different network planes:</t>
<dl>
<dt>Management Plane:</dt>
<dd>Time series data describing the state changes and statistics of a
network node and its components. For example, Interface state and
statistics modelled in ietf-interfaces.yang <xref
target="RFC8343"/></dd>
</dl>
<dl>
<dt>Control Plane:</dt>
<dd>Time series data describing the state and state changes of network
reachability. For example, BGP VPNv6 unicast updates and withdrawals
exported in BGP Monitoring Protocol (BMP) <xref target="RFC7854"/> and
modeled in BGP <xref target="RFC4364"/></dd>
</dl>
<dl>
<dt>Forwarding Plane:</dt>
<dd>Time series data describing the forwarding behavior of packets and
its data-plane context. For example, dropped packet count modelled in
IPFIX entity forwardingStatus(IE89) <xref target="RFC7270"/> and
packetDeltaCount(IE2) <xref target="RFC5102"/> and exportet with IPFIX
<xref target="RFC7011"/>.</dd>
</dl>
<t>In terms of network observability, semantics of analytical data
refers to incident notifications or service level indicators. For
example the incident notification described in Section 7.2 of <xref
target="I-D.feng-opsawg-incident-management"/>, the health status and
symptoms described in the Service Assurance Intend Based Networking
<xref target="RFC9418"/> or the precision availability metrics defined
in <xref target="I-D.ietf-ippm-pam"/> or network anomalies and its
symptoms as described in this document.</t>
</section>
<section anchor="Observed_Symptoms" title="Observed Symptoms">
<t>In this section observed network symptoms are specified and
categorized according to the following scheme:</t>
<dl>
<dt>Action:</dt>
<dd>
<t>Which action the network node performed for a packet in the
Forwarding Plane, a path or adjacency in the Control Plane or state
or statistical changes in the Management Plane. For Forwarding Plane
we distinguish between missing, where the drop occured outside the
measured network node, drop and on-path delay, which was measured on
the network node. For Control Plane we distinguish between
reachability, which refers to a change in the routing or forwarding
information base (RIB/FIB) and adjcacency which refers to a change
in peering or link-layer resolution. For Management Plane we refer
to state or statistical changes on interfaces.</t>
</dd>
</dl>
<dl>
<dt>Reason:</dt>
<dd>
<t>For each action one or more reasons describing why this action
was used. For Drops in Forwarding Plane we distinguish between
Unreachable because network layer reachability information was
missing, administered because an administrator configured a rule
preventing the forwarding for this packet and Corrupt where the
network node was unable to determine where to forward to due to
packet, software or hardware error. For On-Path Delay we distinguish
between Minimum, Average and Maximum Delay for a given Flow. For
Control Plane wherever a the reachability was updated or withdrawn
or the adjcacency was established or teared down. For Management
Plane we distinguish between interfaces states up and down, and
statistical erros, discards or unknown protocol counters.</t>
</dd>
</dl>
<dl>
<dt>Cause:</dt>
<dd>
<t>For each reason one or more cause describe the cause why the
action was chosen..</t>
</dd>
</dl>
<t><xref target="symptom_forwarding_plane_actions_table"/> consolidates
for the forwarding plane a list of common symptoms with their Actions,
Reasons and Causes.</t>
<table align="center" anchor="symptom_forwarding_plane_actions_table">
<name slugifiedName="symptom_forwarding_plane_actions">Describing
Symptoms and their Actions, Reason and Cause for Forwarding
Plane</name>
<thead>
<tr>
<th align="left" colspan="1" rowspan="1">Action</th>
<th align="left" colspan="1" rowspan="1">Reason</th>
<th align="left" colspan="1" rowspan="1">Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" colspan="1" rowspan="1">Missing</td>
<td align="left" colspan="1" rowspan="1">Previous</td>
<td align="left" colspan="1" rowspan="1">Time</td>
</tr>
<tr>
<td align="left" colspan="1" rowspan="1">Drop</td>
<td align="left" colspan="1" rowspan="1">Unreachable</td>
<td align="left" colspan="1" rowspan="1">next-hop</td>
</tr>
<tr>
<td align="left" colspan="1" rowspan="1">Drop</td>
<td align="left" colspan="1" rowspan="1">Unreachable</td>
<td align="left" colspan="1" rowspan="1">link-layer</td>
</tr>
<tr>
<td align="left" colspan="1" rowspan="1">Drop</td>
<td align="left" colspan="1" rowspan="1">Unreachable</td>
<td align="left" colspan="1" rowspan="1">Time To Life expired</td>
</tr>
<tr>
<td align="left" colspan="1" rowspan="1">Drop</td>
<td align="left" colspan="1" rowspan="1">Unreachable</td>
<td align="left" colspan="1" rowspan="1">Fragmentation needed and
Don't Fragment set</td>
</tr>
<tr>
<td align="left" colspan="1" rowspan="1">Drop</td>
<td align="left" colspan="1" rowspan="1">Administered</td>
<td align="left" colspan="1" rowspan="1">Access-List</td>
</tr>
<tr>
<td align="left" colspan="1" rowspan="1">Drop</td>
<td align="left" colspan="1" rowspan="1">Administered</td>
<td align="left" colspan="1" rowspan="1">Unicast Reverse Path
Forwarding</td>
</tr>
<tr>
<td align="left" colspan="1" rowspan="1">Drop</td>
<td align="left" colspan="1" rowspan="1">Administered</td>
<td align="left" colspan="1" rowspan="1">Discard Route</td>
</tr>
<tr>
<td align="left" colspan="1" rowspan="1">Drop</td>
<td align="left" colspan="1" rowspan="1">Administered</td>
<td align="left" colspan="1" rowspan="1">Policed</td>
</tr>
<tr>
<td align="left" colspan="1" rowspan="1">Drop</td>
<td align="left" colspan="1" rowspan="1">Administered</td>
<td align="left" colspan="1" rowspan="1">Shaped</td>
</tr>
<tr>
<td align="left" colspan="1" rowspan="1">Drop</td>
<td align="left" colspan="1" rowspan="1">Corrupt</td>
<td align="left" colspan="1" rowspan="1">Bad Packet</td>
</tr>
<tr>
<td align="left" colspan="1" rowspan="1">Drop</td>
<td align="left" colspan="1" rowspan="1">Corrupt</td>
<td align="left" colspan="1" rowspan="1">Bad Egress Interface</td>
</tr>
<tr>
<td align="left" colspan="1" rowspan="1">Delay</td>
<td align="left" colspan="1" rowspan="1">Min</td>
<td align="left" colspan="1" rowspan="1">-</td>
</tr>
<tr>
<td align="left" colspan="1" rowspan="1">Delay</td>
<td align="left" colspan="1" rowspan="1">Mean</td>
<td align="left" colspan="1" rowspan="1">-</td>
</tr>
<tr>
<td align="left" colspan="1" rowspan="1">Delay</td>
<td align="left" colspan="1" rowspan="1">Max</td>
<td align="left" colspan="1" rowspan="1">-</td>
</tr>
</tbody>
</table>
<t><xref target="symptom_control_plane_actions_table"/> consolidates for
the control plane a list of common symptoms with their actions, reasons
and causess.</t>
<table align="center" anchor="symptom_control_plane_actions_table">
<name slugifiedName="symptom_control_plane_actions">Describing
Symptoms and their Actions, Reason and Cause for Control Plane</name>
<thead>
<tr>
<th align="left" colspan="1" rowspan="1">Action</th>
<th align="left" colspan="1" rowspan="1">Reason</th>
<th align="left" colspan="1" rowspan="1">Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" colspan="1" rowspan="1">Reachability</td>
<td align="left" colspan="1" rowspan="1">Update</td>
<td align="left" colspan="1" rowspan="1">Imported</td>
</tr>
<tr>
<td align="left" colspan="1" rowspan="1">Reachability</td>
<td align="left" colspan="1" rowspan="1">Update</td>
<td align="left" colspan="1" rowspan="1">Received</td>
</tr>
<tr>
<td align="left" colspan="1" rowspan="1">Reachability</td>
<td align="left" colspan="1" rowspan="1">Withdraw</td>
<td align="left" colspan="1" rowspan="1">Received</td>
</tr>
<tr>
<td align="left" colspan="1" rowspan="1">Reachability</td>
<td align="left" colspan="1" rowspan="1">Withdraw</td>
<td align="left" colspan="1" rowspan="1">Peer Down</td>
</tr>
<tr>
<td align="left" colspan="1" rowspan="1">Adjacency</td>
<td align="left" colspan="1" rowspan="1">Established</td>
<td align="left" colspan="1" rowspan="1">Peer</td>
</tr>
<tr>
<td align="left" colspan="1" rowspan="1">Adjacency</td>
<td align="left" colspan="1" rowspan="1">Established</td>
<td align="left" colspan="1" rowspan="1">Link-Layer</td>
</tr>
<tr>
<td align="left" colspan="1" rowspan="1">Adjacency</td>
<td align="left" colspan="1" rowspan="1">Teared Down</td>
<td align="left" colspan="1" rowspan="1">Peer</td>
</tr>
<tr>
<td align="left" colspan="1" rowspan="1">Adjacency</td>
<td align="left" colspan="1" rowspan="1">Teared Down</td>
<td align="left" colspan="1" rowspan="1">Link-Layer</td>
</tr>
</tbody>
</table>
<t><xref target="symptom_management_plane_actions_table"/> consolidates
for the management plane a list of common symptoms with their Actions,
Reasons and Causes.</t>
<table align="center" anchor="symptom_management_plane_actions_table">
<name slugifiedName="symptom_management_plane_actions">Describing
Symptoms and their Actions, Reason and Cause for Management
Plane</name>
<thead>
<tr>
<th align="left" colspan="1" rowspan="1">Action</th>
<th align="left" colspan="1" rowspan="1">Reason</th>
<th align="left" colspan="1" rowspan="1">Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" colspan="1" rowspan="1">Interface</td>
<td align="left" colspan="1" rowspan="1">Up</td>
<td align="left" colspan="1" rowspan="1">Link-Layer</td>
</tr>
<tr>
<td align="left" colspan="1" rowspan="1">Interface</td>
<td align="left" colspan="1" rowspan="1">Down</td>
<td align="left" colspan="1" rowspan="1">Link-Layer</td>
</tr>
<tr>
<td align="left" colspan="1" rowspan="1">Interface</td>
<td align="left" colspan="1" rowspan="1">Errors</td>
<td align="left" colspan="1" rowspan="1">-</td>
</tr>
<tr>
<td align="left" colspan="1" rowspan="1">Interface</td>
<td align="left" colspan="1" rowspan="1">Discards</td>
<td align="left" colspan="1" rowspan="1">-</td>
</tr>
<tr>
<td align="left" colspan="1" rowspan="1">Interface</td>
<td align="left" colspan="1" rowspan="1">Unknown Protocol</td>
<td align="left" colspan="1" rowspan="1">-</td>
</tr>
</tbody>
</table>
</section>
<section anchor="Semantic_Metadata" title="Semantic Metadata">
<t>Metadata adds additional context to data. For instance, in networks
the software version of a network node where management plane metrics
are obtained from as described in<xref
target="I-D.claise-opsawg-collected-data-manifest"/>. Where in Semantic
Metadata the meaning or ontology of the annotated data is being
described. In this section, a YANG model is defined, in order to provide
a structure for the metadata related to anomalies happening in the
network. The module is intended to describe the metadata used to
"annotate" the observability data collected from the network nodes,
which can include time series data and logs, as well as other forms of
data that is "time-bounded". The aspects discussed so far in this
document are grouped under the concept of "incident" which represents a
collection of symptoms. The incident overall has a set of parameters
that describe the overall behavior of the network in a given time-window
including all the spotted symptoms (network anomalies).</t>
<section anchor="symptom-model-tree"
title="Overview of the Model for the Symptom Semantic Metadata">
<t><xref target="symptom-semantic-metadata-tree"/> contains the YANG
tree diagram <xref target="RFC8340"/> of the
ietf-symptom-semantic-metadata module. For each symptom, the following
parameters have been assigned: - a unique ID for identification; a
description of the symptom; - a list of affected metrics / counters; -
Start and End time, to specify the time-window; - a confident score,
indicating how accurate the symptom was detected; - a concern score,
indicating how critical the symptom is; - the source, indicating if it
has been identified by a network expert or an algorithm; - the tags
with key value where; - Action, Reason and Cause, can be dannotaed as
described in previous section. <figure
anchor="symptom-semantic-metadata-tree"
title="YANG tree diagram for ietf-symptom-semantic-metadata">
<artwork><![CDATA[
module: ietf-symptom-semantic-metadata
+--rw symptom
+--rw id yang:uuid
+--rw event-id yang:uuid
+--rw description string
+--rw start-time yang:date-and-time
+--rw end-time yang:date-and-time
+--rw confidence-score float
+--rw concern-score? float
+--rw tags* [key]
| +--rw key string
| +--rw value string
+--rw (pattern)?
| +--:(drop)
| | +--rw drop empty
| +--:(spike)
| | +--rw spike empty
| +--:(mean-shift)
| | +--rw mean-shift empty
| +--:(seasonality-shift)
| | +--rw seasonality-shift empty
| +--:(trend)
| | +--rw trend empty
| +--:(other)
| +--rw other string
+--rw source
+--rw (source-type)
| +--:(human)
| | +--rw human empty
| +--:(algorithm)
| +--rw algorithm empty
+--rw name? string
]]></artwork>
</figure></t>
</section>
<section anchor="incident-model-tree"
title="Overview of the Model for the Incident Semantic Metadata">
<t><xref target="incident-semantic-metadata-tree"/> contains the YANG
tree diagram <xref target="RFC8340"/> of the
ietf-incident-semantic-metadata module. The semantic of the fields of
this model is in line with what specified in the previous section, for
the symptom-semantic-metadata-tree. <figure
anchor="incident-semantic-metadata-tree"
title="YANG tree diagram for ietf-incident-semantic-metadata">
<artwork><![CDATA[
module: ietf-incident-semantic-metadata
+--rw incident
+--rw id yang:uuid
+--rw description string
+--rw start-time yang:date-and-time
+--rw end-time yang:date-and-time
+--rw symptoms* []
| +--rw symptom
| +--rw id yang:uuid
| +--rw event-id yang:uuid
| +--rw description string
| +--rw start-time yang:date-and-time
| +--rw end-time yang:date-and-time
| +--rw confidence-score float
| +--rw concern-score? float
| +--rw tags* [key]
| | +--rw key string
| | +--rw value string
| +--rw (pattern)?
| | +--:(drop)
| | | +--rw drop empty
| | +--:(spike)
| | | +--rw spike empty
| | +--:(mean-shift)
| | | +--rw mean-shift empty
| | +--:(seasonality-shift)
| | | +--rw seasonality-shift empty
| | +--:(trend)
| | | +--rw trend empty
| | +--:(other)
| | +--rw other string
| +--rw source
| +--rw (source-type)
| | +--:(human)
| | | +--rw human empty
| | +--:(algorithm)
| | +--rw algorithm empty
| +--rw name? string
+--rw source
+--rw (type)
| +--:(human)
| | +--rw human empty
| +--:(algorithm)
| +--rw algorithm empty
+--rw name? string
]]></artwork>
</figure></t>
</section>
</section>
<section anchor="Security" title="Security Considerations">
<t>The security considerations.</t>
</section>
<section anchor="Acknowledgements" title="Acknowledgements">
<t>The authors would like to thank xxx for their review and valuable
comments.</t>
</section>
</middle>
<back>
<references title="Normative References">
<?rfc include='reference.RFC.2119'?>
<?rfc include='reference.RFC.8174'?>
<?rfc include='reference.RFC.8340'?>
<?rfc include='reference.RFC.9232'?>
<reference anchor="Ahf23"
target="https://anrw23.hotcrp.com/doc/anrw23-paper8.pdf">
<front>
<title>Daisy: Practical Anomaly Detection in large BGP/MPLS and
BGP/SRv6 VPN Networks</title>
<author fullname="Alex Huang Feng" initials="A."
surname="Huang Feng"/>
<date month="July" year="2023"/>
</front>
<seriesInfo name="DOI" value="10.1145/3606464.3606470"/>
<refcontent>IETF 117, Applied Networking Research
Workshop</refcontent>
</reference>
</references>
<references title="Informative References">
<?rfc include='reference.RFC.4364'?>
<?rfc include='reference.RFC.5102'?>
<?rfc include='reference.RFC.7011'?>
<?rfc include='reference.RFC.7270'?>
<?rfc include='reference.RFC.7854'?>
<?rfc include='reference.RFC.8343'?>
<?rfc include='reference.RFC.9418'?>
<?rfc include='reference.I-D.feng-opsawg-incident-management'?>
<?rfc include='reference.I-D.ietf-ippm-pam'?>
<?rfc include='reference.I-D.claise-opsawg-collected-data-manifest'?>
<?rfc include='reference.I-D.ietf-opsawg-ipfix-on-path-telemetry'?>
<reference anchor="VAP09"
target="https://www.researchgate.net/publication/220565847_Anomaly_Detection_A_Survey">
<front>
<title>Anomaly detection: A survey</title>
<author fullname="Varun Chandola" initials="V." surname="Chandola"/>
<author fullname="Arindam Banerjee" initials="A." surname="Banerjee"/>
<author fullname="Vipin Kumar" initials="V." surname="Kumar"/>
<date month="July" year="2009"/>
</front>
<seriesInfo name="DOI" value="10.1145/1541880.1541882"/>
<refcontent>IETF 117, Applied Networking Research
Workshop</refcontent>
</reference>
<reference anchor="Deh22"
target="https://www.oreilly.com/library/view/data-mesh/9781492092384/">
<front>
<title>Data Mesh</title>
<author fullname="Zhamak Dehghani" initials="Z." surname="Dehghani"/>
<date month="March" year="2022"/>
</front>
<seriesInfo name="ISBN" value="9781492092391"/>
<refcontent>O'Reilly Media</refcontent>
</reference>
</references>
</back>
</rfc>