-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathMathys_results_comparison_pb.Rmd
411 lines (342 loc) · 16.4 KB
/
Mathys_results_comparison_pb.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
---
title: "Pseudobulk Differential Expression Analysis of Mathys et al.'s AD datatset"
author: "Alan Murphy"
date: "Most recent update:<br> `r Sys.Date()`"
output:
rmarkdown::html_document:
theme: spacelab
highlight: zenburn
code_folding: show
toc: true
toc_float: true
smooth_scroll: true
number_sections: false
self_contained: true
df_print: paged
editor_options:
chunk_output_type: inline
---
```{r setup, include=T, message=F}
#root.dir <- here::here()
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
#root.dir = root.dir
fig.height = 6,
fig.width = 7.00787 #178mm
)
knitr::opts_knit$set(#root.dir = root.dir,
dpi = 350)
library(ggplot2)
library(cowplot)
library(data.table)
library(wesanderson)
library(gridExtra)
```
## Background
Pseudobulk differential expression (DE) analysis has recently been
proven [1](https://doi.org/10.1038/s41467-021-25960-2) [2](https://doi.org/10.1038/s41467-022-35519-4)
to give optimal performance compared to both mixed models and pseudoreplication
approaches. Here, we apply a pseudobulk DE approach to the
[Mathys et al.](https://doi.org/10.1038/s41586-019-1195-2) Alzheimer’s disease
snRNA-Seq study.
We use the same 6 cell types used in the paper from the
[Allen Brain Atlas](https://doi.org/10.1038/s41586-018-0654-5),
namely Astrocytes (Astro), Excitatory (Exc) and Inhibitory (Inh) neurons,
Microglia (Micro), Oligodendrocytes (Oligo) and
Oligodendrocyte Precursor Cells (OPC).
## Analysis
This analysis was run in `R/run_reanalysis_Mathys_19.R`. Please
**run this first** if rerunning this workbook.
```
#to rerun from command line
cd R/
Rscript run_reanalysis_Mathys_19.R
```
Note this uses sum pseudobulk count data, along with the edgeR Likelihood ratio
test (LRT) differential expression analysis approach. EdgeR LRT was recently
found to perform the best from 14 pseudobulk and non-pseudobulk single cell
differential analysis approaches in an independent benchmark:
https://doi.org/10.1038/s41467-021-25960-2.
The function `sc_cell_type_de` is a multi-purpose function to run differential
expression analysis on single-cell RNA-seq datasets. It both aggregates the data
to sum pseudobulk values and performs the differential expression analysis using
edgeR LRT for all cell types of interest.`sc_cell_type_de` can be used for
categorical (Case/Control) or continuous (a measure like Tau for AD) return
variables and can handle multiple independent variables in the design formula
input.
We can inspect the output:
```{r}
#load the return from sc_cell_type_de
load("results/Mathys_pb_res.RData")
print(names(sc_cell_type_de_return))
```
`celltype_DEGs` gives the differential expression information for the
significant, differentially expressed genes (DEGs), split by cell type. The gene
ENSEMBL ID (ensembl_id), log fold change (logFC), the log counts per million
(logCPM), log ratio (LR), p-value (PValue) and adjusted p-value (adj_pval). We
can combine the DEGs to one data table:
```{r}
#Combine data
combn_DEGs <-
rbindlist(sc_cell_type_de_return$celltype_DEGs,id="celltype")
combn_DEGs
```
`celltype_all_genes` is formatted the same but contains all genes analysed not
just those that are significant. We can combine the result split by cell type
into a single data table as follows:
```{r}
#Combine data
combn_DE_all_genes <-
rbindlist(sc_cell_type_de_return$celltype_all_genes,id="celltype")
head(combn_DE_all_genes)
```
Finally `celltype_counts` contains the counts of cells in the study for each
cell type:
```{r}
#View the cell type counts
sc_cell_type_de_return$celltype_counts
```
`sc_cell_type_de` also produces graphs which we will use to explain the results
of the analysis.
## Results
### Background
This section compares the results from the recently published
[Mathys et al.](https://doi.org/10.1038/s41586-019-1195-2) study into
Single-nucleus transcriptomic analysis and differential expression (DE) of
Alzheimer’s disease.
The aim was to identify differentially expressed genes (DEGs) prevalent in
Alzheimer’s disease (AD) across differing cell types. The samples were
single-nucleus transcriptomes from the prefrontal cortex of 48 individuals,
24 of which had high levels of β-amyloid and other pathological hallmarks of AD
(‘AD-pathology’), and 24 individuals with no or very low β-amyloid burden or
other pathologies (‘no-pathology’).
Mathys et al.'s approach identified **1,031** unique DEGs across 6 major cell
types from the Allen Brain Atlas. However, we re-analysed the data,changing the
quality control and processing approach, using
[scflow](https://www.biorxiv.org/content/10.1101/2021.08.16.456499v2). Moreover,
their differential expression analysis used a cells level analysis where cells
from the same donor were taken as independent replicates. The DEGs were then
compared against a Poisson mixed model. Here, we swapped this approach for
pseudobulk.
### Quality Control (QC) and processing
The authors reported a net of **70,634** cells after QC. These cells were
grouped into the Allen Brian Atlas cell types after an unsupervised clustering
approach. Of the 8 cell types, 2 were removed due to a low number of samples
(pericyte and endothelial cells), leaving 6 cell types; excitatory (Exc) and
inhibitory (Inh) neurons, astrocytes (Astro), oligodendrocytes (Oligo),
oligodendrocyte precursor cells (OPC), and microglia (Micro).
Our QC analysis resulted in **50,831** cells. To match the paper, we grouped
these into the Allen Brian Atlas cell types, again by an unsupervised clustering
approach, and restricted analysis to the six cell types above.
We can compare the proportion of each cell type produced from this QC analysis:
```{r comp_celltypes}
mathys_all_gene_counts_dt <-
data.table::fread(file="data/Mathys_cell_counts.csv")
mathys_all_gene_counts_dt[,prop:=count/sum(count)]
mathys_all_gene_counts_dt[,research_group:="Mathys et al."]
our_all_gene_counts_dt <- data.table::fread(file="results/cell_counts.csv")
our_all_gene_counts_dt[,prop:=count/sum(count)]
our_all_gene_counts_dt[,research_group:="Our analysis"]
combin_gene_counts <- rbind(our_all_gene_counts_dt,mathys_all_gene_counts_dt,
fill=TRUE)
pal=c(wesanderson::wes_palette("Royal2"),
wesanderson::wes_palette("Moonrise3")[1])
ggplot(data=combin_gene_counts,
aes(x=factor(cell),y = prop))+
geom_bar(aes(fill=research_group),stat="identity",position = "dodge")+
labs(y= "Proportion of cells after QC", x = "Cell Type",fill="") +
geom_text(aes(label=round(prop,2), group=research_group),
position=position_dodge(width=0.8), vjust=-0.2,size=3) +
theme_cowplot()+
theme(axis.text = element_text(size=9))+
scale_fill_manual(values=c(pal[2],pal[4]))
```
The proportions of cell types are roughly comparable. The biggest differences
being across Oligodendrocytes and Excitatory neurons. The fact that half of all
of Mathys et al.'s cells were Excitatory neurons is worth noting when we inspect
their DEGs.
### Differential Expression Analysis
Next let's inspect the differentially expressed genes across these cell types
from the two approaches:
Our analysis resulted in only **16** DEGs:
![DEGs per cell type](./results/sc_cell_type_de_graphs/DEGs_per_cell_type.png)
This was far less than the original author's results of **1,031** unique DEGs.
In our analysis (using pseudobulk sum, edgeR LRT), it is interesting that the
DEGs are found in cell types that have small number of cells in the analysis,
Astrocytes,OPCs and microglias. It appears the number of DEGs identified is not
related to the number of cells processed.
We can see this more clearly if we inspect the proportion of DEGs of the total
number of cells per cell type:
![DEGs per cell type with proportions of total number of cells after QC](./results/sc_cell_type_de_graphs/DEGs_proportion_per_cell_type.png)
Microglia cells, despite making up just over 1,500 of the 50,000+ cells, had 14
of the 16 unique DEGs.
We can also inspected the reported DEGs from Mathys et al's results. A p-value
cut-off was not used to obtain the 1,031 unique DEGs across the
differing cell types. Instead the results were compared against another, mixed
model approach. The consistency in directionality and rank of the
differentially expressed genes against this Poisson mixed model was used to
derive them. When an FDR of 0.05 was used from the cell level differential
expression analysis, a far greater number of DEGs were returned:
```{r mathys_res}
#Load the authors' analysis DEGs
mathys_degs <- data.table::fread("data/Mathys_DEGs.csv")
print(length(unique(mathys_degs[adj_p_val<0.05,gene])))
```
To compare results for the Mathys et al., we picked an FDR value for their DEGs
that resulted in the same number of DEGs that our analysis produced (16). This
cut-off was **3.52e-224**. When we view these DEGs by cell type, it is
interesting that all are in excitatory neurons cell type:
```{r mathys_res2}
candidate_cut_off <- 3.44e-210
mathys_degs_match <-mathys_degs[adj_p_val<candidate_cut_off,]
#see the split by cell type
print(mathys_degs_match[,.N,by=celltype])
```
As a reminder in Mathys et al.'s analysis, excitatory neurons are the largest
group, making up 50% or ~35,000 of all cells after QC.
We evaluated the difference in the reported log fold change (logFC)
scores between our analysis and Mathys et al.'s DEGs.
First, consider our logFC scores:
![DEG direction counts](./results/sc_cell_type_de_graphs/DEGs_direction_count_per_cell_type.png)
![DEG boxplots](./results/sc_cell_type_de_graphs/deg_boxplots_cell_types.png)
When we inspect the direction and effect size of the 16 DEGs from our and the
Mathys et al's analysis, further disparities become clear.
```{r comp2_1}
#look at Mathys et al.'s DEG direction and effect size
#lfc read in as factor, need to make it numeric
mathys_degs_match[,lfc:=as.character(lfc)]
mathys_degs_match[,lfc:=as.numeric(lfc)]
mathys_degs_match[,deg_direction:="Down"]
mathys_degs_match[lfc>0,deg_direction:="Up"]
#count
ggplot(data=mathys_degs_match[,.N,by=.(celltype,deg_direction)],
aes(x = factor(deg_direction), y = N, fill=factor(celltype)))+
geom_bar(stat="identity") +
facet_wrap(~factor(celltype),scales="free")+
ggtitle("Cell type counts of Mathys et al.'s DEGs")+
labs(y= "Log2 Fold Change", x = "DEG direction", fill="Cell Type") +
theme_cowplot()+
theme(axis.text = element_text(size=9))+
scale_fill_manual(values=pal)
```
Let's now look at their results' direction and effect size:
```{r comp2_2}
#check median log2 fold change for both up and down regulated genes
#This will give a sense of directional effect size
# Compute boxplot statistics
calc_boxplot_stat <- function(x) {
coef <- 1.5
n <- sum(!is.na(x))
# calculate quantiles
stats <- quantile(x, probs = c(0.0, 0.25, 0.5, 0.75, 1.0))
names(stats) <- c("ymin", "lower", "middle", "upper", "ymax")
iqr <- diff(stats[c(2, 4)])
# set whiskers
outliers <- x < (stats[2] - coef * iqr) | x > (stats[4] + coef * iqr)
if (any(outliers)) {
stats[c(1, 5)] <- range(c(stats[2:4], x[!outliers]), na.rm = TRUE)
}
return(stats)
}
mathys_median_lfc <- mathys_degs_match[,median(lfc),by=deg_direction]
ggplot(data=mathys_degs_match,
aes(x = factor(deg_direction), y = abs(lfc), fill=factor(celltype)))+
stat_summary(fun.data = calc_boxplot_stat, geom="boxplot") +
facet_wrap(~factor(celltype),scales="free")+
ggtitle("Cell type Log2 Fold Change of Mathys et al.'s DEGs",
subtitle = paste0("Median LFC of Mathys et al.'s Down and Up regulated DEGs: ",
round(mathys_median_lfc$V1[[2]],2),", ",
round(mathys_median_lfc$V1[[1]]*-1,2)))+
labs(y= "Log2 Fold Change", x = "DEG direction", fill="Cell Type") +
theme_cowplot()+
theme( axis.text = element_text(size=9))+
scale_fill_manual(values=pal)
```
Mathys et al.'s results shows a smaller log2 fold; median of
0.59 for the up-regulated genes and 0.9 for down-regulated genes whereas our
analysis has a median above 3 for both up and down regulated.
We wanted to try prove a theory that the distribution of DEGs noted in
the Mathys et al's analysis across the cell types, is a function of the number of
cells in each cell type. To do this, we considered all genes from their analysis
that were significant at an FDR of 0.05 (not just the 16 previously inspected):
```{r mathys_dist}
mathys_degs <- mathys_degs[adj_p_val<0.05,]
dist_deg_celltype <- mathys_degs[,.N,by=celltype]$N
names(dist_deg_celltype) <- mathys_degs[,.N,by=celltype]$celltype
ggplot(data=mathys_degs[,.N,by=celltype],
aes(x=factor(celltype),y = N, fill=factor(celltype)))+
geom_bar(stat="identity")+
labs(y= "Number of DEGs identified", x = "Cell Type",fill="Cell Type") +
geom_text(aes(x = celltype, y = N, label = N),nudge_y = 255,size=3) +
theme_cowplot()+
theme(axis.text = element_text(size=9))+
scale_fill_manual(values=pal)
```
It is interesting that at an FDR of 0.05, Mathys et al.'s identified ~14,000
Excitatory neuron DEGs from a set of just under 17,000 genes. Given that half of
all cells after QC were Excitatory, this linked to our hypothesis that there is
some relationship between the number of cells and the level of significance in
Mathys et al.'s analysis.
To test if this distribution is the same as the distribution of cells across
these cell types, we used a non-parametric correlation test. We then repeated
this comparison for our analysis:
```{r mathys_dist2}
mathys_cell_counts <- fread("./data/Mathys_cell_counts.csv")
#make a list
mathys_all_gene_counts <- mathys_cell_counts$count
names(mathys_all_gene_counts) <- mathys_cell_counts$cell
our_cell_counts <- fread("./results/cell_counts.csv")
our_all_gene_counts <- our_cell_counts$count
names(our_all_gene_counts) <- our_cell_counts$cell
#check correlation between cell counts per cell type and distribution of DEGs
comp_mathys <-
data.table("celltype"=sort(names(mathys_all_gene_counts)),
"cell_counts"=mathys_all_gene_counts[
order(names(mathys_all_gene_counts))],
"degs"=dist_deg_celltype[order(names(dist_deg_celltype))])
cor_mathys <-
cor.test(comp_mathys$cell_counts,
comp_mathys$degs,method = "pearson")
comp_mathys_text <- paste0('r = ', round(cor_mathys$estimate,3), ', ',
paste('p = ',round(cor_mathys$p.value,3)))
plot_mathys <-
ggplot(data=comp_mathys,aes(x = cell_counts, y = degs,colour=celltype))+
geom_point(show.legend=F) +
geom_smooth(method = "lm", se = T,formula='y ~ x',
color = 'grey20', alpha = 0.4) +
annotate('text', x = -Inf, y = Inf, hjust = -.1, vjust = 1,
label=comp_mathys_text) +
labs(y= "DEGs", x = "Cell Counts") +
theme_cowplot()+
theme(axis.text = element_text(size=9))+
scale_fill_manual(values=pal)+
ggtitle("Mathys et al. Analysis")
#repeat for our analysis
our_degs <- combn_DE_all_genes[adj_pval<0.05,]
our_dist_deg_celltype <- our_degs[,.N,by=celltype]$N
names(our_dist_deg_celltype) <- our_degs[,.N,by=celltype]$celltype
our_dist_deg_celltype <- c(our_dist_deg_celltype,"Exc"=0,"Inh"=0,"Oligo"=0)
#add zero's where we didn't get any DEGs for the cell type
comp_our <- data.table("celltype"=sort(names(our_all_gene_counts)),
"cell_counts"=our_all_gene_counts[order(names(our_all_gene_counts))],
"degs"=our_dist_deg_celltype[order(names(our_dist_deg_celltype))])
cor_our <- cor.test(comp_our$cell_counts,comp_our$degs,method = "pearson")
our_text <- paste0('r = ', round(cor_our$estimate,3), ', ',
paste('p = ',round(cor_our$p.value,3)))
plot_our <- ggplot(data=comp_our,aes(x = cell_counts, y = degs,colour=celltype))+
geom_point() +
geom_smooth(method = "lm", se = T,formula='y ~ x',color = 'grey20', alpha = 0.4) +
annotate('text', x = -Inf, y = Inf, hjust = -.1, vjust = 1 ,label=our_text)+
labs(y= "DEGs", x = "Cell Counts") +
theme_cowplot()+
theme(axis.text = element_text(size=9))+
scale_fill_manual(values=pal)+
ggtitle("Our Analysis")
gridExtra::grid.arrange(plot_mathys, plot_our, widths=c(0.4,0.5), ncol=2)
```
To get more insight into the pseudobulk results from our analysis, we can view
the pseudobulk expression from the top DEGs from each cell type:
![Pseudobulk expression DEGs](./results/sc_cell_type_de_graphs/Pseudobulk_exp_most_sig_genes.png)
Finally, we can view the related volcano plots for the DEGs:
![Volcano plot DEGs](./results/sc_cell_type_de_graphs/volcano_plot_degs_cell_types.png)