-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
56 lines (49 loc) · 1.61 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from src.utils import *
from src.models import *
import torch
from torchaudio.transforms import *
from torchvision.transforms import Compose, RandomCrop, ToPILImage, ToTensor
from src.inference import EmoRec
import sys
import pandas as pd
import numpy as np
from scipy import stats
def count(arr):
cnt = dict()
for x in arr:
cnt.setdefault(x, 0)
cnt[x] += 1
return cnt
def choose(arr, best):
cnt = count(arr)
cnt = sorted(cnt.items(), key=lambda x: x[1], reverse=True)
if len(cnt) > 1 and cnt[0][1] == cnt[1][1]:
if cnt[0][0] == arr[best] or cnt[1][0] == arr[best]: return arr[best]
return cnt[0][0] if np.random.rand() < 0.5 else cnt[1][0]
return cnt[0][0]
results = dict()
for i in range(5):
frequency = 16000
transform_main = Compose(
[
MFCC(sample_rate=frequency, n_mfcc=30),
TimePad(216)
]
)
test_dataset = ERCDataRaw("data/", False)
model = CNNModel()
model.load_state_dict(torch.load('weights/model_{}.pt'.format(i), map_location=lambda storage, location: storage))
model.eval()
outputs = []
for image in test_dataset[:5]:
output = model(transform_main(image).unsqueeze(0)).argmax(1)[0].item()
outputs.append(output)
for _id, result in zip(test_dataset.filenames[:5], outputs):
results.setdefault(_id, [])
results[_id].append(result)
print('Run #{} done.'.format(i))
best = np.argmax(np.fromfile('weights/val_acc.dat'))
f = open('submission.csv', 'w')
f.write('File,Label\r\n')
for k, v in results.items():
f.write('{},{}\r\n'.format(k, choose(v, best)))