-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlambdarank.cc
304 lines (264 loc) · 11.8 KB
/
lambdarank.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
/// \file lambdarank.cc
/// \author Nishant Sharma
/// \brief Implementation of a LambdaRank's cost calculations as an Op in Tensorflow.
#include <iostream>
#include <algorithm>
#include <vector>
#include <boost/range/irange.hpp>
#include <tensorflow/core/framework/op_kernel.h>
#include <tensorflow/core/framework/tensor_shape.h>
#include <tensorflow/core/platform/default/logging.h>
#include <tensorflow/core/framework/shape_inference.h>
#include "RunningNDCG.h"
using namespace tensorflow;
using namespace boost;
Status LambdaRankShapeFn(::tensorflow::shape_inference::InferenceContext* c)
{
shape_inference::ShapeHandle qid_shape, y_shape, y_pred_shape;
TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &qid_shape));
TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 1, &y_shape));
TF_RETURN_IF_ERROR(c->WithRank(c->input(2), 1, &y_pred_shape));
// Enforce shape for y_shape and y_pred_shape
shape_inference::DimensionHandle n_samples = c->Dim(qid_shape, 0);
TF_RETURN_IF_ERROR(c->Merge(qid_shape, c->Vector(n_samples), &qid_shape));
TF_RETURN_IF_ERROR(c->Merge(y_shape, c->Vector(n_samples), &y_shape));
TF_RETURN_IF_ERROR(c->Merge(y_pred_shape, c->Vector(n_samples), &y_pred_shape));
// Extract max_k.
int max_k = 0;
c->GetAttr("max_k", &max_k);
// Enforce output shapes.
c->set_output(0, c->Scalar());
c->set_output(1, c->Scalar());
c->set_output(2, c->Scalar());
c->set_output(3, c->Vector(n_samples));
return Status::OK();
}
/*
* Function LambdaRank
* Attributes:
* max_k: Maximum top rankers considered.
* Inputs:
* qid: Int vector of query IDs. All results from the same query must come together.
* y: Int vector of target ratings.
* y_pred: Float64 vector of computed scores.
* Outputs:
* ranknet_cost: Value of current Cross Entropy Cost "Function" as per RankNet algorithm.
* lambdarank_cost: Value of current Cross Entropy Cost "Function" as per LambdaRank algorithm.
* Uses NDCG factors from current iteration.
* discrete_metric: Average NDCG score for each query in the set.
* lambdas: Gradients of lambdarank_cost w.r.t. predicted scores(y_pred).
*/
REGISTER_OP("LambdaRank")
.Attr("max_k: int")
.Attr("T: {float, double}")
.Input("qid: int32")
.Input("y: int32")
.Input("y_pred: T")
.Output("ranknet_cost: T")
.Output("lambdarank_cost: T")
.Output("discrete_metric: T")
.Output("lambdas: T")
.SetShapeFn(LambdaRankShapeFn);
/// \brief Implementation of an LambdaRank operation.
/// \param context
/// \author Nishant Sharma
template<class T>
class LambdaRankOp : public OpKernel {
// Get the attributes.
int max_k;
public:
/// \brief Constructor.
/// \param context
explicit LambdaRankOp(OpKernelConstruction* context) : OpKernel(context) {
OP_REQUIRES_OK(context, context->GetAttr("max_k", &max_k));
// Check that max_k is positive.
OP_REQUIRES(context, max_k > 0, errors::InvalidArgument("Need preserve_index >= 0, got ", max_k));
}
/// \brief Compute the LambdaRank.
/// \param context
void Compute(OpKernelContext* context) override {
// cout << "\nStarted compute\n"; cout.flush();
// some checks to be sure ...
DCHECK_EQ(3, context->num_inputs());
// Get the input tensors.
const Tensor& qid = context->input(0);
const Tensor& y = context->input(1);
const Tensor& y_pred = context->input(2);
// Check input dimension counts
DCHECK_EQ(qid.shape().dims(), 1);
DCHECK_EQ(y.shape().dims(), 1);
DCHECK_EQ(y_pred.shape().dims(), 1);
// Check dimensional compatibility.
int n_samples = qid.shape().dim_size(0);
int max_k = (this->max_k > n_samples) ? n_samples : this->max_k;
DCHECK_EQ(y.dim_size(0), n_samples);
DCHECK_EQ(y_pred.dim_size(0), n_samples);
// create output shapes
TensorShape lambdas_shape;
lambdas_shape.AddDim(n_samples);
TensorShape scalar_shape;
// create output tensors
Tensor *ranknet_cost = NULL;
Tensor *lambdarank_cost = NULL;
Tensor *discrete_metric = NULL;
Tensor* lambdas = NULL;
OP_REQUIRES_OK(context, context->allocate_output(0, scalar_shape, &ranknet_cost));
OP_REQUIRES_OK(context, context->allocate_output(1, scalar_shape, &lambdarank_cost));
OP_REQUIRES_OK(context, context->allocate_output(2, scalar_shape, &discrete_metric));
OP_REQUIRES_OK(context, context->allocate_output(3, lambdas_shape, &lambdas));
// Eigen tensors for input data access
auto _qid = qid.vec<int32>();
auto _y = y.vec<int32>();
auto _y_pred = y_pred.vec<T>();
#if 0
cout << "Moved compute | | | | | | | | | | | | |\n"; cout.flush();
for (int i = 0; i < n_samples; i++)
{
cout << endl<<i<<": "<<_qid(i) << ", " <<_y(i) << ", " <<_y_pred(i) << ".";
cout.flush();
}
cout << "Printed stuff | | | | | | | | | | | | |\n"; cout.flush();
cout << "Printed stuff | | | | | | | | | | | | |\n"; cout.flush();
cout << "Printed stuff | | | | | | | | | | | | |\n"; cout.flush();
#endif
// Eigen tensors for output data access
auto _lambdas = lambdas->vec<T>();
auto _ranknet_cost = ranknet_cost->scalar<T>();
auto _lambdarank_cost = lambdarank_cost->scalar<T>();
auto _discrete_metric = discrete_metric->scalar<T>();
// Initialize scores.
_ranknet_cost() = 0;
_lambdarank_cost() = 0;
_discrete_metric() = 0;
int pairCount = 0;
// Initialize lambdas.
for (int i = 0; i < n_samples; i++)
{
_lambdas(i) = 0;
}
// Used to calcualte NDCG and delta-NDCG.
RunningNDCG<T> runningNDCG(max_k);
int a = -1, b = 0;
int num_queries = 0;
do
{
// a marks the first samples for query _qid[a].
// Find b, such that [a, b) is an closed-open interval containing all samples
// of query ID same as _qid[a].
a = b;
// cout << "\nLoop starts with qids" << _qid(0) << "," << _qid(1) << endl; cout.flush();
while (b != n_samples && _qid(a) == _qid(b))
{
b++;
}
// Number of samples in the current query.
int n_query_samples = b - a;
int k = min(max_k, n_query_samples);
// cout << "Current query range "<<a<<", "<<b<<endl; cout.flush();
// Increment number of queries found.
num_queries++;
// Obtain result ranking for the current query according to input y_pred's.
auto query_span = irange(a, b);
std::vector<int> currentRankingWithinQuery(query_span.begin(), query_span.end());
std::sort(
currentRankingWithinQuery.begin(),
currentRankingWithinQuery.end(),
[&_y, &_y_pred](int i, int j) {
return (_y_pred(i) > _y_pred(j))
|| (_y_pred(i) == _y_pred(j) && _y(i) < _y(j));
}
);
// cout << "After sorting" << endl; cout.flush();
// targetsForCurrentRanking = y[currentRankingWithinQuery]
std::vector<T> targetsForCurrentRanking(b - a);
std::transform(currentRankingWithinQuery.begin(),
currentRankingWithinQuery.end(),
targetsForCurrentRanking.begin(),
[&_y](int i) {return _y(i); });
// cout << "After transform." << endl; cout.flush();
T _cur_discrete_metric = runningNDCG.init(
targetsForCurrentRanking.begin(),
targetsForCurrentRanking.end());
// cout << "TF.DM" << _cur_discrete_metric << endl; cout.flush();
T _lambdarank_cost_query = 0;
T _ranknet_cost_query = 0;
// cout << "Started computing lambdas" << endl; cout.flush();
for (int i_rank_cur = 0; i_rank_cur < k; i_rank_cur++)
{
int i = currentRankingWithinQuery[i_rank_cur];
// cout << i << "," << i_rank_cur << ".";
for (int j_rank_cur = i_rank_cur + 1; j_rank_cur != n_query_samples; j_rank_cur++)
{
int j = currentRankingWithinQuery[j_rank_cur];
// cout << j << "," << j_rank_cur << ".";
T abs_swap_delta_ij = abs(runningNDCG.swap_delta(i_rank_cur, j_rank_cur));
T basic_value = 0;
T cross_lambda_ij = 0;
if (_y(i) > _y(j))
{
cross_lambda_ij = -abs_swap_delta_ij / (1 + exp(_y_pred(i) - _y_pred(j)));
#if 0
if (i == debugIndex)
{
print("[A]Adding {0}".format(cross_lambda_ij));
}
else if (j == debugIndex)
{
print("[B]Adding {0}".format(-cross_lambda_ij));
}
#endif
basic_value = log(1 + exp(_y_pred(j) - _y_pred(i)));
}
else if (_y(i) < _y(j))
{
cross_lambda_ij = abs_swap_delta_ij / (1 + exp(_y_pred(j) - _y_pred(i)));
#if 0
if (i == debugIndex)
{
print("[C]Adding {0}".format(-cross_lambda_ij));
}
else if (j == debugIndex)
{
print("[D]Adding {0}".format(cross_lambda_ij));
}
#endif
basic_value = log(1 + exp(_y_pred(i) - _y_pred(j)));
}
else
{
basic_value = log(0.5*exp(_y_pred(j) - _y_pred(i))
+ 0.5*exp(_y_pred(i) - _y_pred(j)));
}
_lambdas(i) += cross_lambda_ij;
_lambdas(j) -= cross_lambda_ij;
_lambdarank_cost_query += abs_swap_delta_ij * basic_value;
_ranknet_cost_query += basic_value;
pairCount++;
// cout << "\n" << i << ", " << j << " -> " << basic_value;
}
}
_ranknet_cost() += _ranknet_cost_query;
_lambdarank_cost() += _lambdarank_cost_query;
_discrete_metric() += _cur_discrete_metric;
// cout << "Done computing lambdas" << endl; cout.flush();
} while (b != n_samples);
// Scale everything so that max value is 1 and can be compared for goodness.
_ranknet_cost() *= 100.0 / n_samples;
_lambdarank_cost() *= 100.0 / n_samples;
_discrete_metric() /= num_queries;
for (int i = 0; i < n_samples; i++)
{
_lambdas(i) *= 100.0 / n_samples;
}
cout <<"pairCount="<< pairCount << ", num_queries=" << num_queries
<< ", RankNetCost="<< _ranknet_cost()
<< ", LambdaRankCost=" << _lambdarank_cost()
<< ", DiscreteMetric=" << _discrete_metric() << endl;
}
};
REGISTER_KERNEL_BUILDER(
Name("LambdaRank").Device(DEVICE_CPU).TypeConstraint<float>("T"),
LambdaRankOp<float>);
REGISTER_KERNEL_BUILDER(
Name("LambdaRank").Device(DEVICE_CPU).TypeConstraint<double>("T"),
LambdaRankOp<double>);