-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpre_emb_gnn.py
36 lines (29 loc) · 1.43 KB
/
pre_emb_gnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import torch
import torch.nn as nn
import torch.nn.functional as F
torch.backends.cudnn.deterministic = True
from torch_scatter import scatter
class PreEmbLayer(torch.nn.Module):
def __init__(self, hidden_dim, n_rel):
super(PreEmbLayer, self).__init__()
self.n_rel = n_rel
self.hidden_dim = hidden_dim
self.rela_embed = nn.Embedding(2 * n_rel + 1, self.hidden_dim)
nn.init.xavier_normal_(self.rela_embed.weight.data)
self.relation_linear = nn.Linear(self.hidden_dim, (2 * n_rel + 1) * self.hidden_dim)
nn.init.xavier_normal_(self.relation_linear.weight.data)
def forward(self, query, hidden, q_sub, q_rel, edges, ent_num, rela_embed=None, relation_linear=None, bid=None, layer=None):
batch_size = q_sub.shape[0]
if rela_embed is None:
rela_embed = self.rela_embed
rela_emb = rela_embed(edges[:, 1])
if relation_linear is None:
relation_linear = self.relation_linear
rela_linear = relation_linear(query).view(batch_size, -1, self.hidden_dim)
# gnn
hidden = hidden # (batch_size, n_ent, dim)
head_emb = hidden[:,edges[:, 0], :]
relation = rela_linear[:, edges[:, 1], :] # (batch_size, edge_num, dim)
message = head_emb + relation # (batch_size, edge_num, dim)
new_hidden = scatter(message, index=edges[:, -1], dim=1, dim_size=ent_num, reduce='mean')
return new_hidden