-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
195 lines (169 loc) · 7.97 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0, 1, 2, 3, 4, 5"
import time
import torch
import random
import logging
import argparse
import numpy as np
from tqdm import tqdm
from torch.backends import cudnn
import warnings
warnings.filterwarnings("ignore", category=Warning)
def set_seed(seed):
seed = int(seed)
random.seed(seed)
np.random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
import utils
import params_helper
from load_data import DataLoader
from base_model import BaseModel
SPLIT = '*' * 30
parser = argparse.ArgumentParser(description="Parser for MStar")
parser.add_argument('--dataset', '-D', type=str, default='fb237_v1') # fb237_v1 WN18RR_v1 nell_v1
parser.add_argument('--task', '-T', type=str, default='test', choices=['train', 'test'])
parser.add_argument('--exp', '-E', type=str, default="tmp")
parser.add_argument('--gpu', type=int, default=1)
parser.add_argument('--save_dir', type=str, default='test')
parser.add_argument('--method', '-M', type=str, default='mstar', choices=['None', 'mstar', 'random_query', 'degree_query'])
parser.add_argument('--train_bad', action='store_true', default=False)
parser.add_argument('--high_way', '-HW', action='store_true', default=False)
parser.add_argument('--remove_aware', action='store_true', default=False) # whether use query-dependent relation embedding or not
parser.add_argument('--metric', type=str, default='mrr', choices=['mrr', 'hits@10'])
parser.add_argument('--seed', type=str, default=1234)
parser.add_argument('--specific', action='store_false', default=True)
parser.add_argument('--lr', type=float, default=None)
parser.add_argument('--decay_rate', '-DR', type=float, default=None)
parser.add_argument('--lamb', type=float, default=None)
parser.add_argument('--dropout', type=float, default=None)
parser.add_argument('--early', type=int, default=None)
parser.add_argument('--hidden_dim', '-HD', type=int, default=None)
parser.add_argument('--attn_dim', type=int, default=None)
parser.add_argument('--type_topk', '-RT', type=int, default=None)
parser.add_argument('--type_num', type=int, default=None)
parser.add_argument('--n_layer', '-LN', type=int, default=None)
parser.add_argument('--n_batch', type=int, default=None)
args = parser.parse_args()
set_seed(args.seed)
base_path = ""
args.train_good = not args.train_bad
args.rela_independent = not args.remove_aware
# experiments
prefix = f"{args.dataset}_{args.method}_{args.high_way}_{args.exp}"
big_dataset = args.dataset[:-3] # fb237/nell/WN18RR
exp_path = os.path.join(base_path, "experiments", big_dataset)
all_exp_dir = os.path.join(base_path, "experiments")
utils.check_dir(all_exp_dir)
bash_dir = os.path.join(base_path, "experiments", args.save_dir)
utils.check_dir(bash_dir)
exp_path = os.path.join(bash_dir, big_dataset)
utils.check_dir(exp_path)
# save_path
args.model_save_path = os.path.join(base_path, exp_path, f"{prefix}.pt")
args.logging_save_path = os.path.join(base_path, exp_path, f"{prefix}.log")
args.predict_save_path = os.path.join(base_path, exp_path, f"{prefix}_predict.txt")
logging.basicConfig(level=logging.INFO, filename=args.logging_save_path, filemode="a", format='%(message)s')
print(f'ModelSavePath: {args.model_save_path}\nLoggingSavePath: {args.logging_save_path}')
class Options(object):
pass
opts = Options
var4 = ["lr", "decay_rate", "lamb", "dropout", "early"]
var5 = ["hidden_dim", "attn_dim", "type_topk", "type_num", "n_layer", "n_batch"]
def run_model(params):
# pre-defined
for p in var4+var5:
setattr(opts, p, params[p])
# only in args
new_par = ['gpu', 'method', 'task', 'metric', 'specific', 'high_way']
for p in new_par:
setattr(opts, p, getattr(args, p))
# output important params
params1 = f"Dataset: {args.dataset}\t| Metric: {args.metric}\t| Method: {args.method}\t| UseHighWay: {args.high_way}"
params2 = f"TrainGood: {args.train_good}\t| Independent: {args.rela_independent}\t| Specific: {args.specific}"
params3 = f"Exp: {args.exp}\t| Task: {args.task}\t| GPU: {args.gpu}\t| ExpPath: {args.model_save_path}\t| Early: {params['early']}"
params4 = "\t| ".join([f"{v}: {params[v]}" for v in var4])
params5 = "\t| ".join([f"{v}: {params[v]}" for v in var5])
content = "\n>>> ".join([params1, params2, params3, params4, params5])
content = f">>> {content}\n{'=' * 50} Training {'=' * 50}"
print(content)
logging.info(content)
opts.rela_independent = args.rela_independent
loader = DataLoader(args, n_batch=opts.n_batch)
opts.n_ent = loader.n_ent
opts.n_rel = loader.n_rel
model = BaseModel(opts, loader)
if args.task == 'train':
best_mrr = 0
early_stop = 0
early = params['early']
start = time.time()
for epoch in range(300):
mrr, t_mrr, out_str = model.train_batch(args)
if mrr > best_mrr:
best_mrr = mrr
best_str = out_str
early_stop = 0
print(f'[{epoch:<2d}] Better MRR!')
logging.info(f'[{epoch:<2d}] Better MRR!')
torch.save(model.model.state_dict(), args.model_save_path)
else:
early_stop += 1
time_info = utils.output_time(start, time.time(), "", None)
curr_content = f'[{epoch:<2d}] -{time_info} | early: {early_stop} | mrr: {mrr:.5f} | {out_str}'
print(curr_content)
logging.info(curr_content)
if early_stop == early:
print(f'[{epoch:<2d}] Early Stop!')
logging.info(f'[{epoch:<2d}] Early Stop!')
break
output_info = f'v_mrr, v_mr, v_h1, v_h3, v_h10, v_h1050, t_mrr, t_mr, t_h1, t_h3, t_h10, t_h1050\n{best_str}'
print(output_info)
logging.info(output_info)
elif args.task == 'test':
model.model.load_state_dict(torch.load(args.model_save_path))
mrr, h10, out_str = model.test(loader)
print(f'Test: {out_str}')
logging.info(f'Test: {out_str}')
loader = DataLoader(args, n_batch=opts.n_batch, dist=[])
all_dist = np.array(loader.ind_test_d)
all_dist = all_dist[all_dist!=-1]
max_d = int(all_dist.max())
print(f'Max Distance: {max_d}')
unique_dist = list(range(1, max_d+1)) + [-1]
with open("test_results.txt", "a") as f:
f.write(f"==================Test Result of {args.dataset} & Method {args.method}==================\n")
f.write(f"Total Result MRR: {mrr:.4f}\t| H@10: {h10:.4f}| Exp: {args.model_save_path}\n")
f.write(f"Dist\tNum \tMRR \tH@10 \n")
for d in unique_dist:
dist = [d]
loader = DataLoader(args, n_batch=opts.n_batch, dist=dist)
if len(loader.ind_test) == 0:
f.write(f'{d:<4d}\t{len(loader.ind_test):<4d}\t{0:.4f}\t{0:.4f}\n')
else:
mrr, h10, _ = model.test(loader)
f.write(f'{d:<4d}\t{len(loader.ind_test):<4d}\t{mrr:.4f}\t{h10:.4f}\n')
print(f"Test Dist Over")
return
content = f"{'=' * 50}Parameters{'=' * 50}"
print(content)
logging.info(content)
params = params_helper.set_params(args)
# modify parameters from argparse
for v in var4+var5:
if getattr(args, v) is not None:
params[v] = getattr(args, v)
modify_content = f"[Modified] {v}: {params[v]}"
print(modify_content)
logging.info(modify_content)
t1 = time.time()
run_model(params)
utils.output_time(t1, time.time(), 'run_model', output=print)
utils.output_time(t1, time.time(), 'run_model', output=logging.info)