forked from dusty-nv/jetson-inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimageNet.cpp
426 lines (331 loc) · 11.5 KB
/
imageNet.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
/*
* Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "imageNet.h"
#include "cudaMappedMemory.h"
#include "cudaResize.h"
#include "commandLine.h"
#include "filesystem.h"
// constructor
imageNet::imageNet() : tensorNet()
{
mCustomClasses = 0;
mOutputClasses = 0;
mNetworkType = CUSTOM;
}
// destructor
imageNet::~imageNet()
{
}
// Create
imageNet* imageNet::Create( imageNet::NetworkType networkType, uint32_t maxBatchSize,
precisionType precision, deviceType device, bool allowGPUFallback )
{
imageNet* net = new imageNet();
if( !net )
return NULL;
if( !net->init(networkType, maxBatchSize, precision, device, allowGPUFallback) )
{
printf("imageNet -- failed to initialize.\n");
return NULL;
}
net->mNetworkType = networkType;
return net;
}
// Create
imageNet* imageNet::Create( const char* prototxt_path, const char* model_path, const char* mean_binary,
const char* class_path, const char* input, const char* output, uint32_t maxBatchSize,
precisionType precision, deviceType device, bool allowGPUFallback )
{
imageNet* net = new imageNet();
if( !net )
return NULL;
if( !net->init(prototxt_path, model_path, mean_binary, class_path, input, output, maxBatchSize, precision, device, allowGPUFallback) )
{
printf("imageNet -- failed to initialize.\n");
return NULL;
}
return net;
}
// init
bool imageNet::init( imageNet::NetworkType networkType, uint32_t maxBatchSize,
precisionType precision, deviceType device, bool allowGPUFallback )
{
if( networkType == imageNet::ALEXNET )
return init( "networks/alexnet.prototxt", "networks/bvlc_alexnet.caffemodel", NULL, "networks/ilsvrc12_synset_words.txt", IMAGENET_DEFAULT_INPUT, IMAGENET_DEFAULT_OUTPUT, maxBatchSize, precision, device, allowGPUFallback );
else if( networkType == imageNet::GOOGLENET )
return init( "networks/googlenet.prototxt", "networks/bvlc_googlenet.caffemodel", NULL, "networks/ilsvrc12_synset_words.txt", IMAGENET_DEFAULT_INPUT, IMAGENET_DEFAULT_OUTPUT, maxBatchSize, precision, device, allowGPUFallback );
else if( networkType == imageNet::GOOGLENET_12 )
return init( "networks/GoogleNet-ILSVRC12-subset/deploy.prototxt", "networks/GoogleNet-ILSVRC12-subset/snapshot_iter_184080.caffemodel", NULL, "networks/GoogleNet-ILSVRC12-subset/labels.txt", IMAGENET_DEFAULT_INPUT, "softmax", maxBatchSize, precision, device, allowGPUFallback );
else
return NULL;
}
// init
bool imageNet::init(const char* prototxt_path, const char* model_path, const char* mean_binary, const char* class_path,
const char* input, const char* output, uint32_t maxBatchSize,
precisionType precision, deviceType device, bool allowGPUFallback )
{
if( !prototxt_path || !model_path || !class_path || !input || !output )
return false;
printf("\n");
printf("imageNet -- loading classification network model from:\n");
printf(" -- prototxt %s\n", prototxt_path);
printf(" -- model %s\n", model_path);
printf(" -- class_labels %s\n", class_path);
printf(" -- input_blob '%s'\n", input);
printf(" -- output_blob '%s'\n", output);
printf(" -- batch_size %u\n\n", maxBatchSize);
/*
* load and parse googlenet network definition and model file
*/
if( !tensorNet::LoadNetwork( prototxt_path, model_path, mean_binary, input, output,
maxBatchSize, precision, device, allowGPUFallback ) )
{
printf("failed to load %s\n", model_path);
return false;
}
printf(LOG_GIE "%s loaded\n", model_path);
/*
* load synset classnames
*/
mOutputClasses = DIMS_C(mOutputs[0].dims);
if( !loadClassInfo(class_path) || mClassSynset.size() != mOutputClasses || mClassDesc.size() != mOutputClasses )
{
printf("imageNet -- failed to load synset class descriptions (%zu / %zu of %u)\n", mClassSynset.size(), mClassDesc.size(), mOutputClasses);
return false;
}
printf("%s initialized.\n", model_path);
return true;
}
// NetworkTypeFromStr
imageNet::NetworkType imageNet::NetworkTypeFromStr( const char* modelName )
{
if( !modelName )
return imageNet::CUSTOM;
imageNet::NetworkType type = imageNet::GOOGLENET;
if( strcasecmp(modelName, "alexnet") == 0 )
type = imageNet::ALEXNET;
else if( strcasecmp(modelName, "googlenet") == 0 )
type = imageNet::GOOGLENET;
else if( strcasecmp(modelName, "googlenet-12") == 0 || strcasecmp(modelName, "googlenet_12") == 0 )
type = imageNet::GOOGLENET_12;
else
type = imageNet::CUSTOM;
return type;
}
// Create
imageNet* imageNet::Create( int argc, char** argv )
{
commandLine cmdLine(argc, argv);
const char* modelName = cmdLine.GetString("model");
if( !modelName )
{
if( argc == 2 )
modelName = argv[1];
else if( argc == 4 )
modelName = argv[3];
else
modelName = "googlenet";
}
//if( argc > 3 )
// modelName = argv[3];
imageNet::NetworkType type = imageNet::GOOGLENET;
if( strcasecmp(modelName, "alexnet") == 0 )
{
type = imageNet::ALEXNET;
}
else if( strcasecmp(modelName, "googlenet") == 0 )
{
type = imageNet::GOOGLENET;
}
else if( strcasecmp(modelName, "googlenet-12") == 0 || strcasecmp(modelName, "googlenet_12") == 0 )
{
type = imageNet::GOOGLENET_12;
}
else
{
const char* prototxt = cmdLine.GetString("prototxt");
const char* labels = cmdLine.GetString("labels");
const char* input = cmdLine.GetString("input_blob");
const char* output = cmdLine.GetString("output_blob");
const char* out_bbox = cmdLine.GetString("output_bbox");
if( !input ) input = IMAGENET_DEFAULT_INPUT;
if( !output ) output = IMAGENET_DEFAULT_OUTPUT;
int maxBatchSize = cmdLine.GetInt("batch_size");
if( maxBatchSize < 1 )
maxBatchSize = 2;
return imageNet::Create(prototxt, modelName, NULL, labels, input, output, maxBatchSize);
}
// create from pretrained model
return imageNet::Create(type);
}
// loadClassInfo
bool imageNet::loadClassInfo( const char* filename )
{
if( !filename )
return false;
// locate the file
const std::string path = locateFile(filename);
if( path.length() == 0 )
{
printf("imageNet -- failed to find %s\n", filename);
return false;
}
// open the file
FILE* f = fopen(path.c_str(), "r");
if( !f )
{
printf("imageNet -- failed to open %s\n", path.c_str());
return false;
}
// read class descriptions
char str[512];
while( fgets(str, 512, f) != NULL )
{
const int syn = 9; // length of synset prefix (in characters)
const int len = strlen(str);
if( len > syn && str[0] == 'n' && str[syn] == ' ' )
{
str[syn] = 0;
str[len-1] = 0;
const std::string a = str;
const std::string b = (str + syn + 1);
//printf("a=%s b=%s\n", a.c_str(), b.c_str());
mClassSynset.push_back(a);
mClassDesc.push_back(b);
}
else if( len > 0 ) // no 9-character synset prefix (i.e. from DIGITS snapshot)
{
char a[10];
sprintf(a, "n%08u", mCustomClasses);
//printf("a=%s b=%s (custom non-synset)\n", a, str);
mCustomClasses++;
if( str[len-1] == '\n' )
str[len-1] = 0;
mClassSynset.push_back(a);
mClassDesc.push_back(str);
}
}
fclose(f);
printf("imageNet -- loaded %zu class info entries\n", mClassSynset.size());
if( mClassSynset.size() == 0 )
return false;
mClassPath = path;
return true;
}
// from imageNet.cu
cudaError_t cudaPreImageNetMean( float4* input, size_t inputWidth, size_t inputHeight, float* output, size_t outputWidth, size_t outputHeight, const float3& mean_value, cudaStream_t stream );
// PreProcess
bool imageNet::PreProcess( float* rgba, uint32_t width, uint32_t height )
{
// verify parameters
if( !rgba || width == 0 || height == 0 )
{
printf(LOG_TRT "imageNet::PreProcess( 0x%p, %u, %u ) -> invalid parameters\n", rgba, width, height);
return false;
}
// downsample and convert to band-sequential BGR
if( CUDA_FAILED(cudaPreImageNetMean((float4*)rgba, width, height, mInputCUDA, mWidth, mHeight,
make_float3(104.0069879317889f, 116.66876761696767f, 122.6789143406786f),
GetStream())) )
{
printf(LOG_TRT "imageNet::PreProcess() -- cudaPreImageNetMean() failed\n");
return false;
}
return true;
}
// Process
bool imageNet::Process()
{
void* bindBuffers[] = { mInputCUDA, mOutputs[0].CUDA };
cudaStream_t stream = GetStream();
if( !stream )
{
if( !mContext->execute(1, bindBuffers) )
{
printf(LOG_TRT "imageNet::Process() -- failed to execute TensorRT network\n");
return false;
}
}
else
{
//printf("%s stream %p\n", deviceTypeToStr(GetDevice()), GetStream());
//CUDA(cudaEventRecord(mEvents[0], stream));
// queue the inference processing kernels
const bool result = mContext->enqueue(1, bindBuffers, stream, NULL);
//CUDA(cudaEventRecord(mEvents[1], stream));
//CUDA(cudaEventSynchronize(mEvents[1]));
CUDA(cudaStreamSynchronize(stream));
if( !result )
{
printf(LOG_TRT "imageNet::Process() -- failed to enqueue TensorRT network\n");
return false;
}
}
//CUDA(cudaDeviceSynchronize());
PROFILER_REPORT();
return true;
}
// Classify
int imageNet::Classify( float* rgba, uint32_t width, uint32_t height, float* confidence )
{
// verify parameters
if( !rgba || width == 0 || height == 0 )
{
printf(LOG_TRT "imageNet::Classify( 0x%p, %u, %u ) -> invalid parameters\n", rgba, width, height);
return -1;
}
// downsample and convert to band-sequential BGR
if( !PreProcess(rgba, width, height) )
{
printf(LOG_TRT "imageNet::Classify() -- PreProcess() failed\n");
return -1;
}
return Classify(confidence);
}
// Classify
int imageNet::Classify( float* confidence )
{
// process with TRT
if( !Process() )
{
printf(LOG_TRT "imageNet::Process() failed\n");
return -1;
}
// determine the maximum class
int classIndex = -1;
float classMax = -1.0f;
for( size_t n=0; n < mOutputClasses; n++ )
{
const float value = mOutputs[0].CPU[n];
if( value >= 0.01f )
printf("class %04zu - %f (%s)\n", n, value, mClassDesc[n].c_str());
if( value > classMax )
{
classIndex = n;
classMax = value;
}
}
if( confidence != NULL )
*confidence = classMax;
//printf("\nmaximum class: #%i (%f) (%s)\n", classIndex, classMax, mClassDesc[classIndex].c_str());
return classIndex;
}