-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathSRGAN.py
279 lines (240 loc) · 14.4 KB
/
SRGAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import tensorflow as tf
import tensorflow.contrib.slim as slim
import time
import numpy as np
import os
from glob import glob
from ops import *
from utils import *
class SRGAN:
model_name = 'SRGAN'
def __init__(self, config, batch_size=1, input_height=256, input_width=256, input_channels=3, sess=None):
self.input_height = input_height
self.input_width = input_width
self.input_channels = input_channels
self.batch_size = batch_size
# pre-tarin VGG19
#self.vgg = VGG19()
self.images_norm = True
self.config = config
self.sess = sess
def generator(self, input_x, reuse=False):
with tf.variable_scope('generator'):
if reuse:
scope.reuse_variables()
# down_sample here
# input_x = down_sample_layer(input_x)
with slim.arg_scope([slim.conv2d_transpose],
weights_initializer=tf.truncated_normal_initializer(stddev=0.02),
weights_regularizer=None,
activation_fn=None,
normalizer_fn=None,
padding='SAME'):
conv1 = tf.nn.relu(slim.conv2d_transpose(input_x, 64, 3, 1, scope='g_conv1'))
print(conv1)
shortcut = conv1
# res_block(input_x, out_channels=64, k=3, s=1, scope='res_block'):
res1 = res_block(conv1, 64, 3, 1, scope='g_res1')
res2 = res_block(res1, 64, 3, 1, scope='g_res2')
res3 = res_block(res2, 64, 3, 1, scope='g_res3')
res4 = res_block(res3, 64, 3, 1, scope='g_res4')
res5 = res_block(res4, 64, 3, 1, scope='g_res5')
conv2 = slim.batch_norm(slim.conv2d_transpose(res5, 64, 3, 1, scope='g_conv2'), scope='g_bn_conv2')
print(conv2)
conv2_out = shortcut+conv2
print(conv2_out)
# pixel_shuffle_layer(x, r, n_split):
conv3 = slim.conv2d_transpose(conv2_out, 256, 3, 1, scope='g_conv3')
print(conv3)
shuffle1 = tf.nn.relu(pixel_shuffle_layer(conv3, 2, 64)) #64*2*2
print(shuffle1)
conv4 = slim.conv2d_transpose(shuffle1, 256, 3, 1, scope='g_conv4')
shuffle2 = tf.nn.relu(pixel_shuffle_layer(conv4, 2, 64))
print(shuffle2)
conv5 = slim.conv2d_transpose(shuffle2, 3, 3, 1, scope='g_conv5')
print(conv5)
self.g_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'generator')
return tf.nn.tanh(conv5)
def discriminator(self, input_x, reuse=False):
with tf.variable_scope('discriminator') as scope:
if reuse:
scope.reuse_variables()
with slim.arg_scope([slim.conv2d, slim.fully_connected],
weights_initializer = tf.truncated_normal_initializer(stddev=0.02),
weights_regularizer = None,
activation_fn=None,
normalizer_fn=None):
conv1 = leaky_relu(slim.conv2d(input_x, 64, 3, 1, scope='d_conv1'))
conv1_1 = leaky_relu(slim.batch_norm(slim.conv2d(conv1, 64, 3, 2, scope='d_conv1_1'), scope='d_bn_conv1_1'))
conv2 = leaky_relu(slim.batch_norm(slim.conv2d(conv1_1, 128, 3, 1, scope='d_conv2'), scope='d_bn_conv2'))
conv2_1 = leaky_relu(slim.batch_norm(slim.conv2d(conv2, 128, 3, 2, scope='d_conv2_1'), scope='d_bn_conv2_1'))
conv3 = leaky_relu(slim.batch_norm(slim.conv2d(conv2_1, 256, 3, 1, scope='d_conv3'), scope='d_bn_conv3'))
conv3_1 = leaky_relu(slim.batch_norm(slim.conv2d(conv3, 256, 3, 2, scope='d_conv3_1'), scope='d_bn_conv3_1'))
conv4 = leaky_relu(slim.batch_norm(slim.conv2d(conv3_1, 512, 3, 1, scope='d_conv4'), scope='d_bn_conv4'))
conv4_1 = leaky_relu(slim.batch_norm(slim.conv2d(conv4, 512, 3, 2, scope='d_conv4_1'), scope='d_bn_conv4_1'))
conv_flat = tf.reshape(conv4_1, [self.batch_size, -1])
dense1 = leaky_relu(slim.fully_connected(conv_flat, 1024, scope='d_dense1'))
dense2 = slim.fully_connected(dense1, 1, scope='d_dense2')
self.d_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'discriminator')
return dense2, tf.nn.sigmoid(dense2)
def build_model(self):
self.input_target = tf.placeholder(tf.float32, [self.batch_size, self.input_height, self.input_width, self.input_channels], name='input_target')
# self.input_source = tf.placeholder(tf.float32, [self.batch_size, self.input_height, self.input_width, self.input_channels], name='input_source')
self.input_source = down_sample_layer(self.input_target)
self.real = self.input_target
self.fake = self.generator(self.input_source, reuse=False)
self.psnr = PSNR(self.real, self.fake)
self.d_loss, self.g_loss, self.content_loss = self.inference_loss(self.real, self.fake)
print('d, g_loss')
self.d_optim = tf.train.AdamOptimizer(learning_rate=self.config.lr, beta1=self.config.beta1, beta2=self.config.beta2).minimize(self.d_loss, var_list=self.d_vars)
print('d_optim')
self.g_optim = tf.train.AdamOptimizer(learning_rate=self.config.lr, beta1=self.config.beta1, beta2=self.config.beta2).minimize(self.g_loss, var_list=self.g_vars)
print('g_optim')
self.srres_optim = tf.train.AdamOptimizer(learning_rate=self.config.lr, beta1=self.config.beta1, beta2=self.config.beta2).minimize(self.content_loss, var_list=self.g_vars)
print('srres_optim')
self.d_loss_summary = tf.summary.scalar('d_loss', self.d_loss)
self.g_loss_summary = tf.summary.scalar('g_loss', self.g_loss)
self.content_loss_summary = tf.summary.scalar('content_loss', self.content_loss)
self.psnr_summary = tf.summary.scalar('psnr', self.psnr)
self.summaries = tf.summary.merge_all()
self.summary_writer = tf.summary.FileWriter('logs', self.sess.graph)
self.saver = tf.train.Saver()
print('builded model...')
def inference_loss(self, real, fake):
# vgg19 content loss
def inference_vgg19_content_loss(real, fake):
_, real_phi = self.vgg.build_model(real, tf.constant(False), False) # First
_, fake_phi = self.vgg.build_model(fake, tf.constant(False), True) # Second
content_loss = None
for i in range(len(real_phi)):
l2_loss = tf.nn.l2_loss(real_phi[i] - fake_phi[i])
if content_loss is None:
content_loss = l2_loss
else:
content_loss = content_loss + l2_loss
return tf.reduce_mean(content_loss)
# MSE content loss
def inference_mse_content_loss(real, fake):
return tf.reduce_mean(tf.square(real-fake))
def inference_adversarial_loss(x, y, w=1, type_='gan'):
if type_=='gan':
try:
return w*tf.nn.sigmoid_cross_entropy_with_logits(logits=x, labels=y)
except:
return w*tf.nn.sigmoid_cross_entropy_with_logits(logits=x, labels=y)
elif type_=='lsgan':
return w*(x-y)**2
else:
raise ValueError('no {} loss type'.format(type_))
content_loss = inference_mse_content_loss(real, fake)
d_real_logits, d_real_sigmoid = self.discriminator(real, reuse=False)
d_fake_logits, d_fake_sigmoid = self.discriminator(fake, reuse=True)
d_fake_loss = tf.reduce_mean(inference_adversarial_loss(d_real_logits, tf.ones_like(d_real_sigmoid)))
d_real_loss = tf.reduce_mean(inference_adversarial_loss(d_fake_logits, tf.zeros_like(d_fake_sigmoid)))
g_fake_loss = tf.reduce_mean(inference_adversarial_loss(d_fake_logits, tf.ones_like(d_fake_sigmoid)))
d_loss = self.config.lambd*(d_fake_loss+d_real_loss)
g_loss = content_loss + self.config.lambd*g_fake_loss
return d_loss, g_loss, content_loss
def train(self):
try:
tf.global_variables_initializer().run()
except:
tf.initialize_all_variables().run()
# data/train/*.*
data = glob(os.path.join(self.config.dataset_dir, 'train', self.config.train_set, '*.*'))
batch_idxs = int(len(data)/self.batch_size)
counter = 1
bool_check, counter = self.load_model(self.config.checkpoint_dir)
if bool_check:
print('[!!!] load model successfully')
counter = counter + 1
else:
print('[***] fail to load model')
counter = 1
print('total steps:{}'.format(self.config.epoches*batch_idxs))
start_time = time.time()
for epoch in range(self.config.epoches):
np.random.shuffle(data)
for idx in range(batch_idxs):
batch_files = data[idx*self.batch_size:(idx+1)*self.batch_size]
batch_x = [get_images(batch_file, self.config.is_crop, self.config.fine_size, self.images_norm) for batch_file in batch_files]
batch_x = np.array(batch_x).astype(np.float32)
if counter < 2e4:
_, content_loss, psnr = self.sess.run([self.srres_optim, self.content_loss, self.psnr], feed_dict={self.input_target:batch_x})
end_time = time.time()
print('epoch{}[{}/{}]:total_time:{:.4f},content_loss:{:4f},psnr:{:.4f}'.format(epoch, idx, batch_idxs, end_time-start_time, content_loss, psnr))
else:
_, d_loss, summaries = self.sess.run([self.d_optim, self.d_loss, self.summaries], feed_dict={self.input_target:batch_x})
_, g_loss, psnr, summaries= self.sess.run([self.g_optim, self.g_loss, self.psnr, self.summaries], feed_dict={self.input_target:batch_x})
end_time = time.time()
print('epoch{}[{}/{}]:total_time:{:.4f},d_loss:{:.4f},g_loss:{:4f},psnr:{:.4f}'.format(epoch, idx, batch_idxs, end_time-start_time, d_loss, g_loss, psnr))
#self.summary_writer.add_summary(summaries, global_step=counter)
if np.mod(counter, 100)==0:
self.sample(epoch, idx)
if np.mod(counter, 500)==0:
self.save_model(self.config.checkpoint_dir, counter)
counter = counter+1
def sample(self,epoch, idx):
# here I use set5 as the valuation sets
data = glob(os.path.join(self.config.dataset_dir, 'val', self.config.val_set, '*.*'))
data = data[:self.batch_size]
batch_x = [get_images(batch_file, self.config.is_crop, self.config.fine_size, self.images_norm) for batch_file in data]
batch_x = np.array(batch_x).astype(np.float32)
sample_images, psnr, input_source = self.sess.run([self.fake, self.psnr, self.input_source], feed_dict={self.input_target:batch_x})
save_images(sample_images, [4,4], './{}/{}_sample_{}_{}.png'.format(self.config.sample_dir, self.config.val_set,epoch, idx))
save_images(input_source, [4,4], './{}/{}_input_{}_{}.png'.format(self.config.sample_dir, self.config.val_set,epoch, idx))
print('---------------------------------------')
print('epoch{}:psnr{:.4f}'.format(epoch, psnr))
print('---------------------------------------')
def test(self):
print('testing')
bool_check, counter = self.load_model(self.config.checkpoint_dir)
if bool_check:
print('[!!!] load model successfully')
counter = counter + 1
else:
print('[***] fail to load model')
counter = 1
test = glob(os.path.join(self.config.dataset_dir, 'test', self.config.test_set, '*.*'))
batch_files = test[:self.batch_size]
batch_x = [get_images(batch_file, True, self.config.fine_size, self.images_norm) for batch_file in batch_files]
batchs = np.array(batch_x).astype(np.float32)
sample_images, input_sources = self.sess.run([self.fake, self.input_source], feed_dict={self.input_target:batchs})
#images = np.concatenate([sample_images, batchs], 2)
for i in range(len(batch_x)):
batch = np.expand_dims(batchs[i],0)
sample_image = np.expand_dims(sample_images[i],0)
input_source = np.expand_dims(input_sources[i],0)
save_images(batch, [1,1], './{}/{}_gt_hr_{}.png'.format(self.config.test_dir, self.config.test_set,i))
save_images(sample_image, [1,1], './{}/{}_test_hr_{}.png'.format(self.config.test_dir, self.config.test_set,i))
save_images(input_source, [1,1], './{}/{}_gt_lr_{}.png'.format(self.config.test_dir, self.config.test_set,i))
@property
def model_dir(self):
return "{}_{}_{}".format(
self.model_name, self.config.dataset_name,
self.batch_size)
def save_model(self, checkpoint_dir, step):
checkpoint_dir = os.path.join(checkpoint_dir, self.config.model_dir, self.model_name)
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
self.saver.save(self.sess,os.path.join(checkpoint_dir, self.model_name+'.model'), global_step=step)
def load_model(self, checkpoint_dir):
import re
print(" [*] Reading checkpoints...")
checkpoint_dir = os.path.join(checkpoint_dir, self.config.model_dir, self.model_name)
ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
self.saver.restore(self.sess, os.path.join(checkpoint_dir, ckpt_name))
counter = int(next(re.finditer("(\d+)(?!.*\d)",ckpt_name)).group(0))
print(" [*] Success to read {}".format(ckpt_name))
return True, counter
else:
print(" [*] Failed to find a checkpoint")
return False, 0
if __name__=='__main__':
srgan = SRGAN()
a = tf.random_normal([64,24,24,3])
#out = srgan.generator(a)
out,_ = srgan.discriminator(a)
print(out)