forked from deemeetree/dfa
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdfa.js
556 lines (446 loc) · 14.9 KB
/
dfa.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
/*
Detrended Fluctuation Analysis (DFA)
Javascript port
available on https://github.com/deemeetree/dfa
based on the approach described on https://noduslabs.com/featured/fractal-variability-feedback-system/
based on the python script https://github.com/dokato/dfa
~ Concept
DFA is used to measure the behaviour of a time series.
An obtained alpha component (closely related to the Hurst exponent) will indicate
the presence of correlations in the time series.
It is based on the relationship between the length of an observation and cumulated variability.
~ Algorithm:
1) represent a time series as a one-dimensional vector
2) transform it into cumulative sum of variances from the mean
3) generate the scales of different window sizes for the time series — each containing the number of observations
4) split the cumulative variance vector into those chunks
5) for each chunk: generate polinomial in the range in a window (to detrend it)
6) calculate RMS of the fluctuations of the original from the fit
7) get the average RMS value for each window in the scale
8) take the average for each squared RMS for each scale
9) if they align along in a straight line in loglog plot, there is power law relation
i.e. as observations increase in length, the amplitude of average fluctuations increases as well
that is, there is an exponential growth of fluctuations when there's an exponential growth of scale (2^n)
on the smaller scales the deviations are smaller. on the bigger scales they are much bigger.
~ Simple use
let time_series = [8, 10, 6, 9, 7, 5, 5, 11, 11, 8, 6, 7, 9, 10, 7, 9]
let dfa = new DFA(time_series)
let alpha_component = dfa.compute()
console.log(alpha_component)
*/
let DFA = (function () {
function log2(x) {
return Math.log(x) / Math.log(2);
}
function range(size) {
let result = [];
for (let i = 0; i < size; i++) {
result.push(i);
}
return result;
}
let DFA = function (x) {
if (!(this instanceof DFA)) {
return new DFA(x);
}
if (
!(
x instanceof Array ||
x instanceof Float32Array ||
x instanceof Float64Array
)
) {
throw new Error("x must be an array");
}
this.x = x;
};
DFA.prototype.cumsumVariance = function (x, mean) {
let cumulativeSumVariance = (
(sum) => (value) =>
(sum += value - mean)
)(0);
return x.map(cumulativeSumVariance);
};
DFA.prototype.averageVariance = function (x, mean) {
// Sum the absolute deviations
let totalDeviation = 0;
for (let i = 0; i < x.length; i++) {
totalDeviation += Math.abs(x[i] - mean);
}
// Return the average deviation
return totalDeviation / x.length;
};
DFA.prototype.deviationsFromMean = function (x, mean) {
const deviationsVector = x.map((value) => value - mean);
return deviationsVector;
};
DFA.prototype.squareVector = function (x) {
return x.map((value) => Math.pow(value, 2));
};
DFA.prototype.SDNN = function (x) {
const deviationsFromMean = this.deviationsFromMean(x, this.meanOfVector(x));
const squaredVector = this.squareVector(deviationsFromMean);
const meanSquaredVector = this.meanOfVectorNoBias(squaredVector);
return Math.pow(meanSquaredVector, 0.5);
};
DFA.prototype.averageDifferences = function (x) {
let sumOfDifferences = 0;
// Loop through the intervals and calculate the sum of differences
for (let i = 0; i < x.length - 1; i++) {
sumOfDifferences += Math.abs(x[i + 1] - x[i]);
}
// Return the average difference
return sumOfDifferences / (x.length - 1);
};
DFA.prototype.RMSSD = function (x) {
let sumOfSquaredDifferences = 0;
// Loop through the intervals and calculate the sum of squared differences
for (let i = 0; i < x.length - 1; i++) {
const difference = Math.abs(x[i + 1] - x[i]);
sumOfSquaredDifferences += difference * difference;
}
// Calculate RMSSD
const rmssd = Math.sqrt(sumOfSquaredDifferences / (x.length - 1));
return rmssd;
};
DFA.prototype.naturalLog = function (value) {
return Math.log(value);
};
DFA.prototype.PNN50 = function (rrIntervals) {
let differences = [];
let countDifferencesOver50ms = 0;
// Calculate differences between successive RR intervals
for (let i = 1; i < rrIntervals.length; i++) {
differences.push(Math.abs(rrIntervals[i] - rrIntervals[i - 1])); // absolute difference
if (differences[i - 1] > 50) {
countDifferencesOver50ms++;
}
}
// Calculate pNN50
let pNN50 = (countDifferencesOver50ms / (rrIntervals.length - 1)) * 100;
return pNN50;
};
DFA.prototype.generateRange = function (array, startAt = 0, step = 1) {
let size = array.length;
return range(size).map((i) => i * step + startAt);
};
DFA.prototype.generateZeroArray = function (size) {
return range(size).map((i) => 0);
};
DFA.prototype.generateScaleRange = function (array, startAt = 4, step = 0.5) {
// the size of the scale should be not longer than the array
let startPow = Math.sqrt(startAt);
let size = Math.floor((log2(array.length) - startPow) / step + 1);
return range(size).map((i) => Math.floor(Math.pow(2, i * step + startPow))); // Math.round could be used, but .floor makes it possible to have more windows
};
DFA.prototype.splitArrayIntoChunks = function (arr, size, strict = false) {
let chunkedArray = [];
for (let i = 0; i < arr.length; i += size) {
chunkedArray.push(arr.slice(i, i + size));
}
if (strict) {
if (chunkedArray[chunkedArray.length - 1].length < size) {
chunkedArray.pop();
}
}
return chunkedArray;
};
DFA.prototype.meanOfVector = function (x) {
// Declare y within the function scope
let y = x || this.x; // If x is not provided, use this.x
// Define the mean function
let mean = (arr) => arr.reduce((p, c) => p + c, 0) / arr.length;
// Return the computed mean
return mean(y);
};
DFA.prototype.meanOfVectorNoBias = function (x) {
// Properly declare y within the function scope
let y = x || this.x;
// Define the mean function
let mean = (arr) => arr.reduce((p, c) => p + c, 0) / (arr.length - 1);
// Return the computed mean (or adjusted value)
return mean(y);
};
DFA.prototype.log2Vector = function (x) {
if (!(x instanceof Array)) {
throw new Error("log2Vector input must be an array");
}
let y = [];
for (let i in x) {
y[i] = log2(x[i]);
}
return y;
};
DFA.prototype.RMS = function (cut, fit) {
if (cut.length != fit.length) {
throw new Error(
"for calculating the RMS of the two vectors they should be equal"
);
}
// let's build the variance vector for the 2 vectors
let variance_vector = [];
for (let i = 0; i < cut.length; i++) {
variance_vector[i] = Math.pow(cut[i] - fit[i], 2);
}
// let's calculate the average for that vector and take a square root of it
return Math.sqrt(this.meanOfVector(variance_vector));
};
DFA.prototype.alphaScore = function (alpha, level = "moderate") {
let thresholds = [0.55, 0.95, 1.05];
if (level == "relaxed") {
thresholds = [0.65, 0.9, 1.1];
} else if (level == "strict") {
thresholds = [0.5, 0.98, 1.02];
}
if (alpha <= thresholds[0]) {
return "recovering";
} else if (alpha > thresholds[0] && alpha < thresholds[1]) {
return "regular";
} else if (alpha >= thresholds[1] && alpha <= thresholds[2]) {
return "resilient";
} else if (alpha > thresholds[2]) {
return "tension";
}
};
DFA.prototype.compute = function (
min_window = 4,
step = 0.5,
level = "moderate"
) {
/*
Transform the series into the cumulative sum of variances (deviations from the mean).
We need this to only look at the fluctuations and not the absolute values.
*/
let cumsum = this.cumsumVariance(this.x, this.meanOfVector(this.x));
let averageVariance = this.averageVariance(
this.x,
this.meanOfVector(this.x)
);
let meanValue = this.meanOfVector(this.x);
let SDNN = this.SDNN(this.x);
let RMSSD = this.RMSSD(this.x);
let lnRMSSD = this.naturalLog(RMSSD);
let PNN50 = this.PNN50(this.x);
let averageDifferences = this.averageDifferences(this.x);
let lengthOfData = this.x.length;
/*
Create observation windows of length, e.g scales = [4,5,8,11,16]
Scale of the window size from min_window to max series length.
Each increment is made at the rate of 2^step.
This is done to have exponential increase of the scale windows.
*/
let scales = this.generateScaleRange(cumsum, min_window, step);
/*
Split the cumulative sum into the window chunks of scales.
E.g. for a series of 16 values, the first window of size 4 will split it into 4 windows of 4 values in each.
*/
let split_scales = {};
let fluctuations = [];
for (let s in scales) {
// split cumsum into the window sizes of scales[s]
let window_size = scales[s];
split_scales[window_size] = this.splitArrayIntoChunks(
cumsum,
window_size,
true
);
let num_windows = split_scales[window_size].length;
/*
For each window let's build a polynomial in order to detrend it.
Then we will calculate RMS (root mean square) for each window (standard deviation)
*/
let rms = this.generateZeroArray(num_windows);
for (let chunk in split_scales[window_size]) {
// a chunk window of the scale w
let xcut = split_scales[window_size][chunk];
// values vector
let vector = this.generateRange(xcut, 0, 1);
// calculate polynomial fit of the cumsum in the split scale
// e.g. make a straight line that fits values found in that window row
let poly = new Polyfit(vector, xcut);
// use polyfit coefficients to build a straight line xfit along the split_scales[w] data
// using the coefficiens that can be retried via poly.computeCoefficients(1)
// this is how we detrend the data
let coeff = poly.getPolynomial(1); // 1 is the degree
let xfit = [];
for (let c in vector) {
xfit[c] = coeff(c);
}
// let's now calculate the root mean square off the differences
// between the values in this window chunk (xcut) and the fit (xfit)
rms[chunk] = Math.pow(this.RMS(xcut, xfit), 2);
poly = null;
}
// let's get the average of the variance for each window in this scale
// and calculate its deviation
fluctuations[s] = Math.sqrt(this.meanOfVector(rms));
}
/*
Calculate best-fit for the Scales to Fluctuations (RMS)
We now have the vector with scales that shows the number of values in each window.
We also have the fluctuations vector, which shows the square root of the mean RMS.
We plot them against each other on the log base 2 scales and find the coefficient of the best-fit.
*/
let scales_log = this.log2Vector(scales);
let flucts_log = this.log2Vector(fluctuations);
let alpha_poly = new Polyfit(scales_log, flucts_log);
let coefficients = alpha_poly.computeCoefficients(1);
let alpha = coefficients[1];
let arraySize = scales.length;
let alphaScore = this.alphaScore(alpha, level);
let result = {
averageVariance: averageVariance,
meanValue: meanValue,
lengthOfData: lengthOfData,
SDNN: SDNN,
RMSSD: RMSSD,
lnRMSSD: lnRMSSD,
PNN50: PNN50,
averageDifferences: averageDifferences,
scales: scales,
segments: arraySize,
fluctuations: fluctuations,
scales_log: scales_log,
fluctuations_log: flucts_log,
coefficients: coefficients,
alpha: alpha,
alphaScore: alphaScore,
};
return result;
};
/*
POLINOMIAL CALCULATION
taken from https://github.com/rfink/polyfit.js
~ Concept:
What is a function that best describes a relationship?
n is the degree, so if n = 1, what is the straight line that describes the relationship
~ Use:
let poly = new Polyfit([0,1,2,3],[0,0,-2,-3])
poly.computeCoefficients(1) // 1 is the degree
// result: [0.4, -1.1] - python DFA algorithm yields reverse order
let func = poly.getPolynomial(1)
func(0)
func(1)
etc. for the fit
*/
class Polyfit {
constructor(x, y) {
// Validate input arrays
if (!Array.isArray(x) || !Array.isArray(y)) {
throw new Error("x and y must be arrays");
}
if (x.length !== y.length) {
throw new Error("x and y must have the same length");
}
this.x = x;
this.y = y;
this.FloatXArray =
x instanceof Float32Array
? Float32Array
: x instanceof Float64Array
? Float64Array
: null;
}
static gaussJordanDivide(matrix, row, col, numCols) {
const divisor = matrix[row][col];
for (var i = col + 1; i < numCols; i++) {
matrix[row][i] /= divisor;
}
matrix[row][col] = 1;
}
static gaussJordanEliminate(matrix, row, col, numRows, numCols) {
for (var i = 0; i < numRows; i++) {
if (i !== row) {
var factor = matrix[i][col];
for (var j = col + 1; j < numCols; j++) {
matrix[i][j] -= factor * matrix[row][j];
}
matrix[i][col] = 0;
}
}
}
static gaussJordanEchelonize(matrix) {
const rows = matrix.length;
const cols = matrix[0].length;
for (var col = 0, row = 0; col < cols && row < rows; col++) {
var maxRow = row;
for (var i = row + 1; i < rows; i++) {
if (Math.abs(matrix[i][col]) > Math.abs(matrix[maxRow][col])) {
maxRow = i;
}
}
if (matrix[maxRow][col] === 0) continue;
// Swap rows
var temp = matrix[row];
matrix[row] = matrix[maxRow];
matrix[maxRow] = temp;
Polyfit.gaussJordanDivide(matrix, row, col, cols);
Polyfit.gaussJordanEliminate(matrix, row, col, rows, cols);
row++;
}
}
computeCoefficients(p) {
const n = this.x.length;
var m = [];
for (var i = 0; i < p + 1; i++) {
var row = [];
for (var j = 0; j < p + 2; j++) {
row.push(0);
}
m.push(row);
}
var mpc = [];
for (var idx = 0; idx < 2 * (p + 1) - 1; idx++) {
var sum = 0;
for (var i = 0; i < n; i++) {
sum += Math.pow(this.x[i], idx);
}
mpc.push(sum);
}
for (var r = 0; r < p + 1; r++) {
for (var c = 0; c < p + 1; c++) {
m[r][c] = mpc[r + c];
}
}
for (var i = 0; i < n; i++) {
var temp = 1;
for (var j = 0; j < p + 1; j++) {
m[j][p + 1] += temp * this.y[i];
temp *= this.x[i];
}
}
Polyfit.gaussJordanEchelonize(m);
var result = [];
for (var i = 0; i < m.length; i++) {
result.push(m[i][p + 1]);
}
return result;
}
getPolynomial(degree) {
if (isNaN(degree) || degree < 0) {
throw new Error("Degree must be a positive integer");
}
var terms = this.computeCoefficients(degree);
return function (x) {
var result = 0;
for (var idx = 0; idx < terms.length; idx++) {
result += terms[idx] * Math.pow(x, idx);
}
return result;
};
}
toExpression(degree) {
if (isNaN(degree) || degree < 0) {
throw new Error("Degree must be a positive integer");
}
var terms = this.computeCoefficients(degree);
var expressions = [];
for (var idx = 0; idx < terms.length; idx++) {
expressions.push(terms[idx].toPrecision() + "x^" + idx);
}
return expressions.join(" + ");
}
}
return DFA;
})();
module.exports = DFA;