-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathreorder_arrays.py
executable file
·350 lines (320 loc) · 17.9 KB
/
reorder_arrays.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
###reorder_arrays
#Copyright 2005-2008 J. David Gladstone Institutes, San Francisco California
#Author Nathan Salomonis - [email protected]
#Permission is hereby granted, free of charge, to any person obtaining a copy
#of this software and associated documentation files (the "Software"), to deal
#in the Software without restriction, including without limitation the rights
#to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
#copies of the Software, and to permit persons to whom the Software is furnished
#to do so, subject to the following conditions:
#THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
#INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
#PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
#HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
#OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
#SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
import sys, string
import os.path
import unique
from stats_scripts import statistics
import math
def filepath(filename):
fn = unique.filepath(filename)
return fn
def reorderArrayHeaders(data_headers,array_order,comp_group_list,array_linker_db):
###array_order gives the final level order sorted, followed by the original index order as a tuple
data_headers2 = {}; array_linker_db2 = {}; ranked_array_headers = []; raw_data_comps={}; group_name_db = {}
for x in array_order:
y = x[1] ### this is the new first index
group = x[2]; group_name = x[3]
group_name_db[group] = group_name
### for example y = 5, therefore the data[row_id][5] entry is now the first
try: data_headers2[group].append(data_headers[y])
except KeyError: data_headers2[group]= [data_headers[y]]
raw_data_comp_headers = {}
for comp in comp_group_list:
temp_raw = []
group1 = int(comp[0]);group2 = int(comp[1])
comp = str(comp[0]),str(comp[1])
g1_headers = data_headers2[group1]
g2_headers = data_headers2[group2]
g1_name = group_name_db[group1]
g2_name = group_name_db[group2]
for header in g2_headers: temp_raw.append(g2_name+':'+header)
for header in g1_headers: temp_raw.append(g1_name+':'+header)
raw_data_comp_headers[comp] = temp_raw
for array_name in array_linker_db: array_linker_db2[array_linker_db[array_name]]=array_name
###Determine the number of arrays in each group for f-test analysis
group_count={}
for x in array_order:
original_index = x[1]; group = x[2]; group_name = x[3]
array_name = array_linker_db2[original_index]; ranked_array_headers.append(group_name+':'+array_name)
try: group_count[group] += 1
except KeyError: group_count[group] = 1
group_count_list=[]; group_count_list2=[]
for group_number in group_count:
count = group_count[group_number]
group_count_list.append((group_number,count))
group_count_list.sort()
#print group_count_list
for (group_number,count) in group_count_list: group_count_list2.append(count)
#return expbuilder_value_db,group_count_list2,ranked_array_headers,raw_data_comps,raw_data_comp_headers
return group_count_list2,raw_data_comp_headers
def filterBlanks(data_list):
data_list_new=[]
for i in data_list:
if i=='':pass
else: data_list_new.append(i)
return data_list_new
def reorder(data,data_headers,array_order,comp_group_list,probeset_db,include_raw_data,array_type,norm,fl,logvalues=True,blanksPresent=False):
###array_order gives the final level order sorted, followed by the original index order as a tuple
expbuilder_value_db = {}; group_name_db = {}; summary_filtering_stats = {}; pval_summary_db= {}
replicates = 'yes'
stat_result_names = ['avg-','log_fold-','fold-','rawp-','adjp-']
group_summary_result_names = ['avg-']
### Define expression variables
try: probability_statistic = fl.ProbabilityStatistic()
except Exception: probability_statistic = 'unpaired t-test'
try: gene_exp_threshold = math.log(fl.GeneExpThreshold(),2)
except Exception: gene_exp_threshold = 0
try: gene_rpkm_threshold = float(fl.RPKMThreshold())
except Exception: gene_rpkm_threshold = 0
try: FDR_statistic = fl.FDRStatistic()
except Exception: FDR_statistic = 'Benjamini-Hochberg'
calculateAsNonLog=True
if blanksPresent:
calculateAsNonLog=False
### Begin processing sample expression values according to the organized groups
for row_id in data:
try: gene = probeset_db[row_id][0]
except: gene = '' #not needed if not altsplice data
data_headers2 = {} #reset each time
grouped_ordered_array_list = {}
for x in array_order:
y = x[1] #this is the new first index
group = x[2]
group_name = x[3]
group_name_db[group] = group_name
#for example y = 5, therefore the data[row_id][5] entry is now the first
try:
try: new_item = data[row_id][y]
except IndexError: print row_id,data[row_id],len(data[row_id]),y,len(array_order),array_order;kill
if logvalues==False and calculateAsNonLog and array_type == 'RNASeq':
new_item = math.pow(2,new_item)
except TypeError: new_item = '' #this is for a spacer added in the above function
try: grouped_ordered_array_list[group].append(new_item)
except KeyError: grouped_ordered_array_list[group] = [new_item]
try: data_headers2[group].append(data_headers[y])
except KeyError: data_headers2[group]= [data_headers[y]]
#perform statistics on each group comparison - comp_group_list: [(1,2),(3,4)]
stat_results = {}
group_summary_results = {}
for comp in comp_group_list:
group1 = int(comp[0])
group2 = int(comp[1])
group1_name = group_name_db[group1]
group2_name = group_name_db[group2]
groups_name = group1_name + "_vs_" + group2_name
data_list1 = grouped_ordered_array_list[group1]
data_list2 = grouped_ordered_array_list[group2] #baseline expression
if blanksPresent: ### Allows for empty cells
data_list1 = filterBlanks(data_list1)
data_list2 = filterBlanks(data_list2)
try: avg1 = statistics.avg(data_list1)
except Exception: avg1 = ''
try: avg2 = statistics.avg(data_list2)
except Exception: avg2=''
try:
if (logvalues == False and array_type != 'RNASeq') or (logvalues==False and calculateAsNonLog):
fold = avg1/avg2
log_fold = math.log(fold,2)
if fold<1: fold = -1.0/fold
else:
log_fold = avg1 - avg2
fold = statistics.log_fold_conversion(log_fold)
except Exception:
log_fold=''; fold=''
try:
#t,df,tails = statistics.ttest(data_list1,data_list2,2,3) #unpaired student ttest, calls p_value function
#t = abs(t); df = round(df); p = str(statistics.t_probability(t,df))
p = statistics.runComparisonStatistic(data_list1,data_list2,probability_statistic)
except Exception: p = 1; sg = 1; N1=0; N2=0
comp = group1,group2
if array_type == 'RNASeq': ### Also non-log but treated differently
if 'RPKM' == norm: adj = 0
else: adj = 1
if calculateAsNonLog == False:
try: avg1 = math.pow(2,avg1)-adj; avg2 = math.pow(2,avg2)-adj
except Exception: avg1=''; avg2=''
if 'RPKM' == norm:
if avg1 < gene_rpkm_threshold and avg2 < gene_rpkm_threshold:
log_fold = 'Insufficient Expression'
fold = 'Insufficient Expression'
else:
if avg1 < gene_exp_threshold and avg2 < gene_exp_threshold:
log_fold = 'Insufficient Expression'
fold = 'Insufficient Expression'
#if row_id=='ENSG00000085514':
#if fold=='Insufficient Expression':
#print [norm, avg1, avg2, fold, comp, gene_exp_threshold, gene_rpkm_threshold, row_id]
#5.96999111075 7.72930768675 Insufficient Expression (3, 1) 1.0 ENSG00000085514
if gene_rpkm_threshold!=0 and calculateAsNonLog: ### Any other data
a1 = nonLogAvg(data_list1)
a2 = nonLogAvg(data_list2)
#print [a1,a2,gene_rpkm_threshold]
if a1<gene_rpkm_threshold and a2<gene_rpkm_threshold:
log_fold = 'Insufficient Expression'
fold = 'Insufficient Expression'
#print log_fold;kill
try:
gs = statistics.GroupStats(log_fold,fold,p)
stat_results[comp] = groups_name,gs,group2_name
if probability_statistic == 'moderated t-test':
gs.setAdditionalStats(data_list1,data_list2) ### Assuming equal variance
if probability_statistic == 'moderated Welch-test':
gs.setAdditionalWelchStats(data_list1,data_list2) ### Assuming unequal variance
except Exception:
null=[]; replicates = 'no' ### Occurs when not enough replicates
#print comp, len(stat_results); kill_program
group_summary_results[group1] = group1_name,[avg1]
group_summary_results[group2] = group2_name,[avg2]
### Replaces the below method to get the largest possible comparison fold and ftest p-value
grouped_exp_data = []; avg_exp_data = []
for group in grouped_ordered_array_list:
data_list = grouped_ordered_array_list[group]
if blanksPresent: ### Allows for empty cells
data_list = filterBlanks(data_list)
if len(data_list)>0: grouped_exp_data.append(data_list)
try: avg = statistics.avg(data_list); avg_exp_data.append(avg)
except Exception:
avg = ''
#print row_id, group, data_list;kill
try: avg_exp_data.sort(); max_fold = avg_exp_data[-1]-avg_exp_data[0]
except Exception: max_fold = 'NA'
try: ftestp = statistics.OneWayANOVA(grouped_exp_data)
except Exception: ftestp = 1
gs = statistics.GroupStats(max_fold,0,ftestp)
summary_filtering_stats[row_id] = gs
stat_result_list = []
for entry in stat_results:
data_tuple = entry,stat_results[entry]
stat_result_list.append(data_tuple)
stat_result_list.sort()
grouped_ordered_array_list2 = []
for group in grouped_ordered_array_list:
data_tuple = group,grouped_ordered_array_list[group]
grouped_ordered_array_list2.append(data_tuple)
grouped_ordered_array_list2.sort() #now the list is sorted by group number
###for each rowid, add in the reordered data, and new statistics for each group and for each comparison
for entry in grouped_ordered_array_list2:
group_number = entry[0]
original_data_values = entry[1]
if include_raw_data == 'yes': ###optionally exclude the raw values
for value in original_data_values:
if array_type == 'RNASeq':
if norm == 'RPKM': adj = 0
else: adj = 1
if calculateAsNonLog == False:
value = math.pow(2,value)-adj
try: expbuilder_value_db[row_id].append(value)
except KeyError: expbuilder_value_db[row_id] = [value]
if group_number in group_summary_results:
group_summary_data = group_summary_results[group_number][1] #the group name is listed as the first entry
for value in group_summary_data:
try: expbuilder_value_db[row_id].append(value)
except KeyError: expbuilder_value_db[row_id] = [value]
for info in stat_result_list:
if info[0][0] == group_number: #comp,(groups_name,[avg1,log_fold,fold,ttest])
comp = info[0]; gs = info[1][1]
expbuilder_value_db[row_id].append(gs.LogFold())
expbuilder_value_db[row_id].append(gs.Fold())
expbuilder_value_db[row_id].append(gs.Pval())
### Create a placeholder and store the position of the adjusted p-value to be calculated
expbuilder_value_db[row_id].append('')
gs.SetAdjPIndex(len(expbuilder_value_db[row_id])-1)
gs.SetPvalIndex(len(expbuilder_value_db[row_id])-2)
pval_summary_db[(row_id,comp)] = gs
###do the same for the headers, but at the dataset level (redundant processes)
array_fold_headers = []; data_headers3 = []
try:
for group in data_headers2:
data_tuple = group,data_headers2[group] #e.g. 1, ['X030910_25_hl.CEL', 'X030910_29R_hl.CEL', 'X030910_45_hl.CEL'])
data_headers3.append(data_tuple)
data_headers3.sort()
except UnboundLocalError:
print data_headers,'\n',array_order,'\n',comp_group_list,'\n'; kill_program
for entry in data_headers3:
x = 0 #indicates the times through a loop
y = 0 #indicates the times through a loop
group_number = entry[0]
original_data_values = entry[1]
if include_raw_data == 'yes': ###optionally exclude the raw values
for value in original_data_values:
array_fold_headers.append(value)
if group_number in group_summary_results:
group_name = group_summary_results[group_number][0]
group_summary_data = group_summary_results[group_number][1]
for value in group_summary_data:
combined_name = group_summary_result_names[x] + group_name #group_summary_result_names = ['avg-']
array_fold_headers.append(combined_name)
x += 1 #increment the loop index
for info in stat_result_list:
if info[0][0] == group_number: #comp,(groups_name,[avg1,log_fold,fold,ttest],group2_name)
groups_name = info[1][0]
only_add_these = stat_result_names[1:]
for value in only_add_these:
new_name = value + groups_name
array_fold_headers.append(new_name)
###For the raw_data only export we need the headers for the different groups (data_headers2) and group names (group_name_db)
raw_data_comp_headers = {}
for comp in comp_group_list:
temp_raw = []
group1 = int(comp[0]);group2 = int(comp[1])
comp = str(comp[0]),str(comp[1])
g1_headers = data_headers2[group1]
g2_headers = data_headers2[group2]
g1_name = group_name_db[group1]
g2_name = group_name_db[group2]
for header in g2_headers: temp_raw.append(g2_name+':'+header)
for header in g1_headers: temp_raw.append(g1_name+':'+header)
raw_data_comp_headers[comp] = temp_raw
###Calculate adjusted ftest p-values using BH95 sorted method
statistics.adjustPermuteStats(summary_filtering_stats)
### Calculate adjusted p-values for all p-values using BH95 sorted method
round=0
for info in comp_group_list:
compid = int(info[0]),int(info[1]); pval_db={}
for (rowid,comp) in pval_summary_db:
if comp == compid:
gs = pval_summary_db[(rowid,comp)]
pval_db[rowid] = gs
if 'moderated' in probability_statistic and replicates == 'yes':
### Moderates the original reported test p-value prior to adjusting
try: statistics.moderateTestStats(pval_db,probability_statistic)
except Exception:
if round == 0:
if replicates == 'yes':
print 'Moderated test failed due to issue with mpmpath or out-of-range values\n ... using unmoderated unpaired test instead!'
null=[] ### Occurs when not enough replicates
round+=1
if FDR_statistic == 'Benjamini-Hochberg':
statistics.adjustPermuteStats(pval_db)
else:
### Calculate a qvalue (https://github.com/nfusi/qvalue)
import numpy; from stats_scripts import qvalue; pvals = []; keys = []
for key in pval_db: pvals.append(pval_db[key].Pval()); keys.append(key)
pvals = numpy.array(pvals)
pvals = qvalue.estimate(pvals)
for i in range(len(pvals)): pval_db[keys[i]].SetAdjP(pvals[i])
for rowid in pval_db:
gs = pval_db[rowid]
expbuilder_value_db[rowid][gs.AdjIndex()] = gs.AdjP() ### set the place holder to the calculated value
if 'moderated' in probability_statistic:
expbuilder_value_db[rowid][gs.RawIndex()] = gs.Pval() ### Replace the non-moderated with a moderated p-value
pval_summary_db=[]
###Finished re-ordering lists and adding statistics to expbuilder_value_db
return expbuilder_value_db, array_fold_headers, summary_filtering_stats, raw_data_comp_headers
def nonLogAvg(data_list):
return statistics.avg(map(lambda x: math.pow(2,x)-1,data_list))
if __name__ == '__main__':
print array_cluster_final