forked from TRACE-LAC/covid19-waves-bogota
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess_results.py
99 lines (87 loc) · 4.28 KB
/
process_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# -*- coding: utf-8 -*-
"""
Created on Fri Oct 21 2022
@author: davidsantiagoquevedo
@author: cwhittaker1000
@author: ntorresd
"""
import yaml
import pandas as pd
import numpy as np
config = yaml.load(open("config.yml", "r"))["default"]
DATA_PATH = config['PATHS']['DATA_PATH']
OUT_PATH = config['PATHS']['OUT_PATH'].format(dir = 'genomics')
FIG_PATH = config['PATHS']['FIG_PATH'].format(dir = 'genomics')
DATE_GENOMICS = config['UPDATE_DATES']['GENOMICS']
GENERATION_TIME = config['MODELS']['GENERATION_TIME']
# Load raw fitting data
df_fit_raw = pd.read_csv(OUT_PATH + 'fit_raw.csv')
df_variants = pd.read_csv(DATA_PATH + 'variants_pivot.csv')
# 2.5th Percentile
def q025(x):
return x.quantile(0.025)
# 97.5th Percentile
def q975(x):
return x.quantile(0.975)
#################################################################################################
# Prepare results
variants_dict = {'1' : 'Alpha',
'2' : 'Delta',
'3' : 'Gamma',
'4' : 'Mu',
'5' : 'Omicron'
}
#################################################################################################
#################################################################################################
#theta
theta_cols = [col for col in df_fit_raw.columns if 'theta' in col]
df_theta = df_fit_raw[theta_cols]
df_theta_mean = df_theta.agg(['mean', q025, q975])
df_theta_mean.reset_index(inplace = True)
df_theta_mean.rename(columns = {'index' : 'stat'}, inplace = True)
df_theta_mean = pd.melt(df_theta_mean, id_vars=['stat'])
df_theta_mean = df_theta_mean.rename(columns = {'value' : 'theta'})
df_theta_mean[['trash1','week_var']] = df_theta_mean['variable'].str.split('[', 1, expand = True)
df_theta_mean[['week','variant']] = df_theta_mean['week_var'].str.split(',', 1, expand = True)
df_theta_mean[['variant', 'thash2']] = df_theta_mean['variant'].str.split(']', 1, expand = True)
df_theta_mean = df_theta_mean[['week','variant','stat','theta']]
df_theta_mean['week'] = df_theta_mean['week'].astype(int) - 1 #Shifting weeks by -1 to make them coherent with the variant counts
df_theta_mean.replace({"variant": variants_dict}, inplace = True)
# Variant counts - week
df_variants['weekly_count_variants'] = df_variants['Alpha'] + df_variants['Delta'] + df_variants['Gamma'] + df_variants['Mu'] + df_variants['Omicron']
df_variants['t'] = df_variants['t'].astype(int)
df_theta_mean = df_theta_mean.merge(df_variants, how = 'left', right_on = 't', left_on = 'week')
del(df_theta_mean['t'])
df_theta_mean.sort_values(by = ['variant', 'week'], inplace = True)
df_theta_mean.to_csv(OUT_PATH + 'theta.csv', index = False)
#################################################################################################
#################################################################################################
#beta
beta_cols = [col for col in df_fit_raw.columns if 'beta[' in col]
df_beta = df_fit_raw[beta_cols]
df_beta_mean = df_beta.agg(['mean', q025, q975])
cols = list(variants_dict.values())
df_beta_mean.columns = cols
df_trans = np.exp(df_beta_mean/7.*GENERATION_TIME) # These are the advantage of variants 2-5
# with respect to variant 1 (which is the pivot). In order to get the advantage
# between the others, we should divide them
def calculate_relative_advantage(stat):
df_beta_cp = df_beta.copy()
df_result = pd.DataFrame({})
for piv_var in list(variants_dict.keys()):
advantage_list =[variants_dict[piv_var]]
for var in list(variants_dict.keys()):
advantage_var = np.exp(df_beta_cp[f'beta[{var}]']/7.*GENERATION_TIME)
advantage_piv_var = np.exp(df_beta_cp[f'beta[{piv_var}]']/7.*GENERATION_TIME)
advantage = advantage_var/advantage_piv_var
adv = advantage.agg(stat)
advantage_list.append(adv)
df_temp = pd.DataFrame([advantage_list], columns = ['pivot_variant'] + cols)
df_result = pd.concat([df_result, df_temp])
return df_result.round(2).reset_index(drop = True)
df_mean = calculate_relative_advantage('mean')
df_025 = calculate_relative_advantage(q025)
df_975 = calculate_relative_advantage(q975)
df_mean.to_csv(OUT_PATH + 'advantage_mean.csv', index = False)
df_025.to_csv(OUT_PATH + 'advantage_025.csv', index = False)
df_975.to_csv(OUT_PATH + 'advantage_975.csv', index = False)