-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy paththread.cpp
272 lines (229 loc) · 6.93 KB
/
thread.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
//
// https://en.cppreference.com/w/cpp/thread/condition_variable#Example
//
#include <condition_variable>
#include <iostream>
#include <mutex>
#include <string>
#include <thread>
namespace condition_variable_test {
std::mutex m;
std::condition_variable cv;
std::string data;
bool ready = false;
bool processed = false;
void worker_thread() {
// Wait until main() sends data
std::unique_lock lk(m);
cv.wait(lk, [] { return ready; });
// after the wait, we own the lock.
std::cout << "Worker thread is processing data\n";
data += " after processing";
// Send data back to main()
processed = true;
std::cout << "Worker thread signals data processing completed\n";
// Manual unlocking is done before notifying, to avoid waking up
// the waiting thread only to block again (see notify_one for details)
lk.unlock();
cv.notify_one();
}
void run() {
std::thread worker(worker_thread);
data = "Example data";
// send data to the worker thread
{
std::lock_guard lk(m);
ready = true;
std::cout
<< "condition_variable_test::run() signals data ready for processing\n";
}
cv.notify_one();
// wait for the worker
{
std::unique_lock lk(m);
cv.wait(lk, [] { return processed; });
}
std::cout << "Back in main(), data = " << data << '\n';
worker.join();
}
} // namespace condition_variable_test
//
// https://en.cppreference.com/w/cpp/thread/mutex#Example
//
#include <chrono>
#include <iostream>
#include <map>
#include <mutex>
#include <string>
#include <thread>
namespace mutex_test {
std::map<std::string, std::string> g_pages;
std::mutex g_pages_mutex;
void save_page(const std::string &url) {
// simulate a long page fetch
std::this_thread::sleep_for(std::chrono::seconds(2));
std::string result = "fake content";
std::lock_guard<std::mutex> guard(g_pages_mutex);
g_pages[url] = result;
}
void run() {
std::thread t1(save_page, "http://foo");
std::thread t2(save_page, "http://bar");
t1.join();
t2.join();
// safe to access g_pages without lock now, as the threads are joined
for (const auto &pair : g_pages) {
std::cout << pair.first << " => " << pair.second << '\n';
}
}
} // namespace mutex_test
//
// https://en.cppreference.com/w/cpp/thread/shared_mutex#Example
//
#include <iostream>
#include <mutex>
#include <shared_mutex>
#include <thread>
namespace shared_mutex_test {
class ThreadSafeCounter {
public:
ThreadSafeCounter() = default;
// Multiple threads/readers can read the counter's value at the same time.
unsigned int get() const {
std::shared_lock lock(mutex_);
return value_;
}
// Only one thread/writer can increment/write the counter's value.
unsigned int increment() {
std::unique_lock lock(mutex_);
return ++value_;
}
// Only one thread/writer can reset/write the counter's value.
void reset() {
std::unique_lock lock(mutex_);
value_ = 0;
}
private:
mutable std::shared_mutex mutex_;
unsigned int value_ = 0;
};
void run() {
ThreadSafeCounter counter;
auto increment_and_print = [&counter]() {
for (int i = 0; i < 3; i++) {
std::cout << std::this_thread::get_id() << ' ' << counter.increment()
<< '\n';
// Note: Writing to std::cout actually needs to be synchronized as well
// by another std::mutex. This has been omitted to keep the example small.
}
};
std::thread thread1(increment_and_print);
std::thread thread2(increment_and_print);
thread1.join();
thread2.join();
}
} // namespace shared_mutex_test
//
// https://en.cppreference.com/w/cpp/thread/future#Example
//
#include <future>
#include <iostream>
#include <thread>
namespace future_test {
void run() {
// future from a packaged_task
std::packaged_task<int()> task([] { return 7; }); // wrap the function
std::future<int> f1 = task.get_future(); // get a future
std::thread t(std::move(task)); // launch on a thread
// future from an async()
std::future<int> f2 = std::async(std::launch::async, [] { return 8; });
// future from a promise
std::promise<int> p;
std::future<int> f3 = p.get_future();
std::thread([&p] { p.set_value_at_thread_exit(9); }).detach();
std::cout << "Waiting..." << std::flush;
f1.wait();
f2.wait();
f3.wait();
std::cout << "Done!\nResults are: " << f1.get() << ' ' << f2.get() << ' '
<< f3.get() << '\n';
t.join();
}
} // namespace future_test
//
// https://en.cppreference.com/w/cpp/thread/promise#Example
//
#include <chrono>
#include <future>
#include <iostream>
#include <numeric>
#include <thread>
#include <vector>
namespace promise_test {
void accumulate(std::vector<int>::iterator first,
std::vector<int>::iterator last,
std::promise<int> accumulate_promise) {
int sum = std::accumulate(first, last, 0);
accumulate_promise.set_value(sum); // Notify future
}
void do_work(std::promise<void> barrier) {
std::this_thread::sleep_for(std::chrono::seconds(1));
barrier.set_value();
}
void run() {
// Demonstrate using promise<int> to transmit a result between threads.
std::vector<int> numbers = {1, 2, 3, 4, 5, 6};
std::promise<int> accumulate_promise;
std::future<int> accumulate_future = accumulate_promise.get_future();
std::thread work_thread(accumulate, numbers.begin(), numbers.end(),
std::move(accumulate_promise));
// future::get() will wait until the future has a valid result and retrieves
// it. Calling wait() before get() is not needed
// accumulate_future.wait(); // wait for result
std::cout << "result=" << accumulate_future.get() << '\n';
work_thread.join(); // wait for thread completion
// Demonstrate using promise<void> to signal state between threads.
std::promise<void> barrier;
std::future<void> barrier_future = barrier.get_future();
std::thread new_work_thread(do_work, std::move(barrier));
barrier_future.wait();
new_work_thread.join();
}
} // namespace promise_test
//
// https://en.cppreference.com/w/cpp/thread/packaged_task#Example
//
#include <cmath>
#include <functional>
#include <future>
#include <iostream>
#include <thread>
namespace packaged_task_test {
// unique function to avoid disambiguating the std::pow overload set
int f(int x, int y) { return (int)std::pow(x, y); }
void task_lambda() {
std::packaged_task<int(int, int)> task(
[](int a, int b) { return (int)std::pow(a, b); });
std::future<int> result = task.get_future();
task(2, 9);
std::cout << "task_lambda:\t" << result.get() << '\n';
}
void task_bind() {
std::packaged_task<int()> task(std::bind(f, 2, 11));
std::future<int> result = task.get_future();
task();
std::cout << "task_bind:\t" << result.get() << '\n';
}
void task_thread() {
std::packaged_task<int(int, int)> task(f);
std::future<int> result = task.get_future();
std::thread task_td(std::move(task), 2, 10);
task_td.join();
std::cout << "task_thread:\t" << result.get() << '\n';
}
void run() {
task_lambda();
task_bind();
task_thread();
}
} // namespace packaged_task_test