-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathincoder.py
47 lines (41 loc) · 1.88 KB
/
incoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from multipl_e.completions import make_main, partial_arg_parser
import torch
import automodel
model = automodel.Model("facebook/incoder-6B", revision=None)
def strip_left_padding(output_tensor):
"""
Since we are not using skip_special_tokens as described above, when batching results of varying length,
the output will contain <|endoftext|> tokens on the left. This code strips those out.
"""
start_index = 0
while output_tensor[start_index].item() == model.tokenizer.pad_token_id or output_tensor[start_index].item() == 2:
start_index += 1
return output_tensor[start_index:]
def extract_fim_part(s: str, prompt):
start_index = len(prompt)
stop_index = s.find("<|endofmask|>")
if stop_index == -1:
stop_index = len(s)
return s[start_index:stop_index]
def fill_in_the_middle(prefix_suffix_tuples, max_tokens: int, temperature: float):
prompts = [f"{prefix}<|mask:0|>{suffix}<|mask:1|><|mask:0|>" for prefix, suffix in prefix_suffix_tuples]
# `return_token_type_ids=False` is essential, or we get nonsense output.
inputs = model.tokenizer(prompts, return_tensors="pt", padding=True, return_token_type_ids=False).to(0)
max_length = inputs.input_ids[0].size(0) + max_tokens
with torch.no_grad():
outputs = model.model.generate(
**inputs,
do_sample=True,
top_p=0.95,
temperature=temperature,
max_length=max_length
)
# WARNING: cannot use skip_special_tokens, because it blows away the FIM special tokens.
return [
extract_fim_part(model.tokenizer.decode(strip_left_padding(tensor), clean_up_tokenization_spaces=False, skip_special_tokens=False), prompt)
for (tensor, prompt) in zip(outputs, prompts)
]
def main():
args = partial_arg_parser()
args = args.parse_args()
make_main(args, "incoder", model.completions)