forked from nod-ai/transformer-benchmarks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathonnx_model_bert_tf.py
464 lines (400 loc) · 22.5 KB
/
onnx_model_bert_tf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
#-------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
#--------------------------------------------------------------------------
import logging
import onnx
import sys
import argparse
import numpy as np
from collections import deque
from onnx import ModelProto, TensorProto, numpy_helper, helper
from onnx_model_bert import BertOnnxModel
logger = logging.getLogger(__name__)
class BertOnnxModelTF(BertOnnxModel):
def __init__(self, model, num_heads, hidden_size):
super().__init__(model, num_heads, hidden_size)
def remove_identity(self):
nodes_to_remove = []
for node in self.nodes():
if node.op_type == 'Identity':
if not self.find_graph_output(node.output[0]):
self.replace_input_of_all_nodes(node.output[0], node.input[0])
nodes_to_remove.append(node)
self.remove_nodes(nodes_to_remove)
logger.info(f"Removed Identity count: {len(nodes_to_remove)}")
def match_mask_path(self, add_or_sub_before_softmax):
mask_nodes = self.match_parent_path(add_or_sub_before_softmax, ['Mul', 'Sub', 'Reshape', 'Cast'],
[1, None, 1, 0])
if mask_nodes is not None:
return mask_nodes
mask_nodes = self.match_parent_path(add_or_sub_before_softmax, ['Mul', 'Sub', 'Cast', 'Slice', 'Unsqueeze'],
[1, 0, 1, 0, 0])
if mask_nodes is not None:
return mask_nodes
mask_nodes = self.match_parent_path(add_or_sub_before_softmax, ['Mul', 'Sub', 'Cast', 'Unsqueeze', 'Unsqueeze'],
[1, None, 1, 0, 0])
return mask_nodes
def get_2d_initializers_from_parent_subgraphs(self, current_node):
"""
Find initializers that is 2D. Returns a dictionary with name as key and shape as value.
"""
parent_nodes = self.get_parent_subgraph_nodes(current_node, [])
initializers = {}
for node in parent_nodes:
for input in node.input:
initializer = self.get_initializer(input)
if initializer:
temp = numpy_helper.to_array(initializer)
if len(temp.shape) == 2:
initializers[initializer.name] = temp.shape
return initializers
def find_segment_ids(self, segment_embedding, input_ids):
input_name_to_nodes = self.input_name_to_nodes()
if segment_embedding not in input_name_to_nodes:
return None
nodes = input_name_to_nodes[segment_embedding]
if len(nodes) != 1:
return None
graph_inputs = self.get_graph_inputs(nodes[0], recursive=True)
if len(graph_inputs) > 1:
print("Found multiple candidates of segment_ids", graph_inputs)
return None
# Find segment ids in graph inputs. The segment id input must not be the same as input_ids.
if len(graph_inputs) == 1 and graph_inputs[0] != input_ids:
return graph_inputs[0]
# If the segment id candidate is the same as the input_ids, try to assign alternative segment ids and simplify the graph if needed.
segment_ids = nodes[0].input[1]
_, segment_id_path, _ = self.match_parent_paths(
nodes[0], [(["ConstantOfShape", "Cast", "Concat", "Slice", "Cast", "Shape"], [1, 0, 0, 0, 0, 0]),
(["ConstantOfShape", "Cast", "Concat", "Unsqueeze", "Squeeze", "Slice", "Cast", "Shape"
], [1, 0, 0, 0, 0, 0, 0, 0])], None)
if segment_id_path and input_ids and input_ids == segment_id_path[-1].input[0]:
logger.debug("Simplify semgent id path...")
constantofshape_node = segment_id_path[0]
graph_name = self.get_graph_by_node(constantofshape_node).name
self.add_node(helper.make_node('Shape', inputs=[input_ids], outputs=["input_shape"]), graph_name)
constantofshape_value = helper.get_attribute_value(constantofshape_node.attribute[0])
self.add_node(
helper.make_node('ConstantOfShape',
inputs=["input_shape"],
outputs=["zeros_for_input_shape"],
value=constantofshape_value), graph_name)
segment_ids = "zeros_for_input_shape"
return segment_ids
def find_input_ids(self, word_embedding):
input_name_to_nodes = self.input_name_to_nodes()
if word_embedding not in input_name_to_nodes:
return None
nodes = input_name_to_nodes[word_embedding]
if len(nodes) != 1:
return None
graph_inputs = self.get_graph_inputs(nodes[0], recursive=True)
if len(graph_inputs) == 1:
return graph_inputs[0]
print("Found multiple candidates of input_ids", graph_inputs)
return None
def find_mask_input(self, excluded_graph_inputs):
for node in self.nodes():
if node.op_type == 'Softmax':
mask_path = self.match_parent_path(node, ['Add', 'Mul', 'Sub', 'Cast', 'Slice', 'Unsqueeze'],
[0, 1, None, 1, 0, 0])
if mask_path is None:
continue
add_node, mul_node, sub_node, cast_node, slice_node, unsqueeze_node = mask_path
if self.has_constant_input(mul_node, -10000) and self.has_constant_input(sub_node, 1):
graph_inputs = self.get_graph_inputs(sub_node, recursive=True)
inputs = [input for input in graph_inputs if input not in excluded_graph_inputs]
if len(inputs) > 1:
print("Found multiple candidates of mask input", inputs)
return None
if len(inputs) == 1:
return inputs[0]
# Duplicated input found. Try to simplify the graph.
path_to_be_simplified = self.match_parent_path(
mask_path[-1],
["ConstantOfShape", "Cast", "Concat", "Unsqueeze", "Squeeze", "Slice", "Cast", "Shape"],
[0, 0, 0, 0, 0, 0, 0, 0])
duplicated_inputs = [input for input in graph_inputs if input in excluded_graph_inputs]
# Simplify graph for dynamic axes.
if path_to_be_simplified and duplicated_inputs and len(
duplicated_inputs) == 1 and duplicated_inputs[0] == path_to_be_simplified[-1].input[0]:
logger.debug("Simplify semgent id path...")
constantofshape_node = path_to_be_simplified[0]
constantofshape_value = helper.get_attribute_value(constantofshape_node.attribute[0])
graph_name = self.get_graph_by_node(constantofshape_node).name
self.add_node(
helper.make_node('Shape', inputs=[duplicated_inputs[0]], outputs=["input_shape_for_mask"]),
graph_name)
self.add_node(
helper.make_node('ConstantOfShape',
inputs=["input_shape_for_mask"],
outputs=[unsqueeze_node.input[0]],
value=constantofshape_value), graph_name)
return unsqueeze_node.input[0]
return None
def create_embedding_subgraph(self, normalize_node, word_embedding, segment_embedding, position_embedding):
input_ids = self.find_input_ids(word_embedding)
if input_ids is None:
logger.info("Failed to find input_ids. Cannot fuse embedding layer.")
return False
segment_ids = self.find_segment_ids(segment_embedding, input_ids)
if segment_ids is None:
logger.info("Failed to find segment_ids. Cannot fuse embedding layer.")
return False
mask_input = self.find_mask_input([segment_ids, input_ids])
if mask_input is None:
logger.info("Failed to find input_mask. Cannot fuse embedding layer.")
return False
self.bert_inputs = [input_ids, segment_ids, mask_input]
mask_index = self.create_node_name('mask_index')
self.attention_mask.set_mask_indice(mask_input, mask_index)
if self.find_graph_input(input_ids).type.tensor_type.elem_type != TensorProto.INT32:
casted, input_ids = self.utils.cast_graph_input_to_int32(input_ids)
if self.find_graph_input(segment_ids):
casted, segment_ids = self.utils.cast_graph_input_to_int32(segment_ids)
else:
segment_ids, segment_id_cast_node = self.utils.cast_input_to_int32(segment_ids)
if self.find_graph_input(mask_input):
casted, mask_input = self.utils.cast_graph_input_to_int32(mask_input)
else:
mask_input, mask_input_cast_node = self.utils.cast_input_to_int32(mask_input)
embed_output = self.create_node_name('embed_output')
embed_node = onnx.helper.make_node(
'EmbedLayerNormalization',
inputs=[
input_ids,
segment_ids,
word_embedding,
position_embedding,
segment_embedding,
normalize_node.input[1], # gamma
normalize_node.input[2], # beta
mask_input
],
outputs=[embed_output, mask_index],
name="EmbedLayer")
embed_node.domain = "com.microsoft"
self.replace_input_of_all_nodes(normalize_node.output[0], embed_output)
self.add_node(embed_node, self.get_graph_by_node(normalize_node).name)
def process_embedding(self):
"""
Automatically detect word, segment and position embeddings.
"""
logger.info("start processing embedding layer...")
output_name_to_node = self.output_name_to_node()
layer_norm_nodes = self.get_nodes_by_op_type("LayerNormalization")
for layer_norm_node in layer_norm_nodes:
pos_embed_path = self.match_parent_path(layer_norm_node, ['Add', 'Reshape', 'Slice'], [0, 1, 0],
output_name_to_node)
if pos_embed_path is None:
continue
add_node, reshape_node, slice_node = pos_embed_path
initializer = self.get_initializer(slice_node.input[0])
if initializer is None:
continue
temp = numpy_helper.to_array(initializer)
if len(temp.shape) == 2:
logger.info("Found position embedding. name:{}, shape:{}".format(initializer.name, temp.shape))
position_embedding = initializer.name
else:
logger.info("Failed to find position embedding. name:{}, shape:{}".format(initializer.name, temp.shape))
return
first_parent = self.get_parent(add_node, 0, output_name_to_node)
if first_parent is not None and first_parent.op_type == "Add":
embeddings = self.get_2d_initializers_from_parent_subgraphs(first_parent)
if len(embeddings) != 2:
logger.warning(
"Failed to find two embeddings (word and segment) from Add node. Found {}".format(embeddings))
return
word_embedding = None
segment_embedding = None
for name, shape in embeddings.items():
if shape[0] == 2:
segment_embedding = name
logger.info("Found segment embedding. name:{}, shape:{}".format(name, shape))
else:
word_embedding = name
logger.info("Found words embedding. name:{}, shape:{}".format(name, shape))
if word_embedding is None or segment_embedding is None:
logger.info("Failed to find both word and segment embedding")
return
logger.info("Create Embedding node")
self.create_embedding_subgraph(layer_norm_node, word_embedding, segment_embedding, position_embedding)
# Prune graph to remove those original embedding nodes.
self.prune_graph()
break
def check_attention_input(self, matmul_q, matmul_k, matmul_v, parent, output_name_to_node):
for x in [matmul_q, matmul_k, matmul_v]:
root_input = x.input[0]
root_node = output_name_to_node[root_input]
if root_node == parent:
continue
logger.debug(f"Check attention input failed:{root_input}, {parent.output[0]}")
return False
return True
def fuse_attention(self):
output_name_to_node = self.output_name_to_node()
nodes_to_remove = []
attention_count = 0
start_nodes = []
skip_layer_norm_nodes = self.get_nodes_by_op_type("SkipLayerNormalization")
layer_norm_nodes = self.get_nodes_by_op_type("LayerNormalization")
# Sometimes we can not fuse skiplayernormalization since the add before layernorm has an output that used by nodes outside skiplayernorm
# Conceptually we treat add before layernorm as skiplayernorm node since they share the same pattern
start_nodes.extend(skip_layer_norm_nodes)
start_nodes.extend(layer_norm_nodes)
for normalize_node in start_nodes:
graph_name = self.get_graph_by_node(normalize_node).name
# SkipLayerNormalization has two inputs, and one of them is the root input for attention.
if normalize_node.op_type == 'LayerNormalization':
add_before_layernorm = self.match_parent(normalize_node, 'Add', 0)
if add_before_layernorm is not None:
normalize_node = add_before_layernorm
else:
continue
parent = self.get_parent(normalize_node, 1)
if parent is None or parent.op_type not in ["SkipLayerNormalization", "LayerNormalization", "Reshape"]:
parent = self.get_parent(normalize_node, 0)
if parent is None or parent.op_type not in ["SkipLayerNormalization", "LayerNormalization", "Reshape"]:
logger.debug("Failed to match parent of normalize_node")
continue
qkv_nodes = self.match_parent_path(normalize_node, ['Add', 'MatMul', 'Reshape', 'Transpose', 'MatMul'],
[0, 0, 0, 0, 0])
if qkv_nodes is None:
qkv_nodes = self.match_parent_path(normalize_node, ['MatMul', 'Reshape', 'Transpose', 'MatMul'],
[1, 0, 0, 0])
if qkv_nodes is None:
qkv_nodes = self.match_parent_path(normalize_node, ['Add', 'Einsum', 'Einsum'], [0, 0, 0])
if qkv_nodes is None:
logger.debug("Failed to match qkv nodes")
continue
matmul_qkv = qkv_nodes[-1]
v_nodes = self.match_parent_path(matmul_qkv, ['Transpose', 'Reshape', 'Add', 'MatMul'], [1, 0, 0, 0])
if v_nodes is None:
v_nodes = self.match_parent_path(matmul_qkv, ['Add', 'Einsum'], [1, 0])
if v_nodes is None:
logger.debug("Failed to match v path")
continue
add_v = v_nodes[-2]
matmul_v = v_nodes[-1]
qk_nodes = self.match_parent_path(matmul_qkv, ['Softmax', 'Add', "Mul", 'MatMul'], [0, 0, 0, 0])
if qk_nodes is None:
qk_nodes = self.match_parent_path(matmul_qkv, ['Softmax', 'Add', 'Einsum'], [0, 0, 0])
if qk_nodes is None:
logger.debug("Failed to match qk_paths")
continue
matmul_qk = qk_nodes[-1]
q_nodes = self.match_parent_path(matmul_qk, ['Transpose', 'Reshape', 'Add', 'MatMul'], [0, 0, 0, 0])
if q_nodes is None:
q_nodes = self.match_parent_path(matmul_qk, ['Add', 'Einsum'], [0, 0])
if q_nodes is None:
logger.debug("Failed to match q path")
continue
add_q = q_nodes[-2]
matmul_q = q_nodes[-1]
k_nodes = self.match_parent_path(matmul_qk, ['Transpose', 'Reshape', 'Add', 'MatMul'], [1, 0, 0, 0])
if k_nodes is None:
k_nodes = self.match_parent_path(matmul_qk, ['Mul', 'Add', 'Einsum'], [1, 0, 0])
if k_nodes is None:
logger.debug("Failed to match k path")
continue
add_k = k_nodes[-2]
matmul_k = k_nodes[-1]
mask_nodes = self.match_mask_path(qk_nodes[1])
if mask_nodes is None:
logger.debug("Cannot find mask_nodes.")
continue
if not self.has_constant_input(mask_nodes[1], 1):
logger.debug("Sub node expected to have an input with constant value 1.0.")
continue
# add a squeeze node to convert a 3-d mask to 2-d
squeeze_node = self.match_parent_path(mask_nodes[-1], ['Squeeze'], [0]) or self.match_parent_path(
mask_nodes[-1], ['Expand'], [0])
squeeze_node_name = "Squeeze_3d_to_2d_mask"
squeeze_output_name = squeeze_node_name + "_output"
if squeeze_node is None and len(mask_nodes) == 5 and self.find_graph_input(mask_nodes[-1].input[0]) is None:
mask_input = mask_nodes[-1].input[1]
self.add_node(
helper.make_node("Squeeze", [mask_input], [squeeze_output_name], squeeze_node_name, axes=[1]),
graph_name)
mask_nodes[-1].input[0] = squeeze_output_name
is_same_root = self.check_attention_input(matmul_q, matmul_k, matmul_v, parent, output_name_to_node)
if is_same_root:
mask_index = self.attention_mask.process_mask(mask_nodes[-1].input[0])
logger.debug("Create an Attention node.")
# For tf models, q and v are flipped.
attention_node = self.attention_fusion.create_attention_node(mask_index, matmul_k, matmul_q, matmul_v,
add_k, add_q, add_v, self.num_heads,
self.hidden_size, parent.output[0],
qkv_nodes[2].output[0], None)
if attention_node is None:
continue
if qkv_nodes[1].op_type == 'Einsum':
# add reshape before einsum
tensor = helper.make_tensor(name=qkv_nodes[1].name + "_newshape",
data_type=TensorProto.INT64,
dims=[4],
vals=np.int64(
[[0, 0, self.num_heads,
int(self.hidden_size / self.num_heads)]]).tobytes(),
raw=True)
self.add_initializer(tensor, graph_name)
reshape_ = helper.make_node("Reshape",
inputs=[attention_node.output[0], qkv_nodes[1].name + "_newshape"],
outputs=[qkv_nodes[1].name + "_reshape_output"],
name=qkv_nodes[1].name + "_reshape")
qkv_nodes[1].input[0] = qkv_nodes[1].name + "_reshape_output"
self.add_node(reshape_, graph_name)
if parent.op_type == 'Reshape':
# Temporary work around: we require the skiplayernorm and attention op be fed with 3-d input
hidden_size = numpy_helper.to_array(self.get_initializer(parent.input[1]))[1]
tensor = helper.make_tensor(name=parent.name + "_modified",
data_type=TensorProto.INT64,
dims=[3],
vals=np.int64([[1, -1, hidden_size]]).tobytes(),
raw=True)
self.add_initializer(tensor, graph_name)
parent.input[1] = parent.name + "_modified"
self.add_node(attention_node, graph_name)
attention_count += 1
nodes_to_remove.extend(qkv_nodes[2:])
nodes_to_remove.extend(qk_nodes)
nodes_to_remove.extend(q_nodes)
nodes_to_remove.extend(k_nodes)
nodes_to_remove.extend(v_nodes)
nodes_to_remove.extend(mask_nodes)
else:
logger.debug("Root node not matched.")
continue
self.remove_nodes(nodes_to_remove)
self.update_graph()
logger.info(f"Fused Attention count:{attention_count}")
def preprocess(self):
self.remove_identity()
self.process_embedding()
self.skip_reshape()
def skip_reshape(self):
count = 0
reshape_nodes = self.get_nodes_by_op_type("Reshape")
for reshape_node in reshape_nodes:
parent = self.get_parent(reshape_node, 0)
if parent is not None and parent.op_type == "Reshape":
reshape_node.input[0] = parent.input[0]
count += 1
if count > 0:
logger.info(f"Skip consequent Reshape count: {count}")
def remove_reshape_before_first_attention(self):
attention_nodes = self.get_nodes_by_op_type("Attention")
for attention_node in attention_nodes:
path = self.match_parent_path(attention_node, ['Reshape', 'EmbedLayerNormalization'], [0, 0])
if path is None:
continue
logger.info("Remove Reshape before first Attention node.")
reshape, _ = path
self.replace_input_of_all_nodes(reshape.output[0], reshape.input[0])
self.remove_node(reshape)
break
def postprocess(self):
self.remove_reshape_before_first_attention()
self.prune_graph()