diff --git a/tests/test_layers.py b/tests/test_layers.py index ff538eb6..e88a4e80 100644 --- a/tests/test_layers.py +++ b/tests/test_layers.py @@ -46,6 +46,7 @@ InputLayer = keras.layers.InputLayer Lambda = keras.layers.Lambda Layer = keras.layers.Layer +LeakyReLU = keras.layers.LeakyReLU LSTM = keras.layers.LSTM Maximum = keras.layers.Maximum MaxPool1D = keras.layers.MaxPool1D @@ -1120,6 +1121,62 @@ def _model(): expected = model.predict(x) self.assertTrue(run_onnx_runtime(onnx_model.graph.name, onnx_model, x, expected, self.model_files)) + @unittest.skipIf(is_keras_older_than("2.2.4") or is_tf_keras, + "ReLU support requires keras 2.2.4 or later.") + def test_shared_model_3(self): + def _bottleneck(x, filters, activation, strides, block_id): + padding = 'same' if strides == 1 else 'valid' + ch_axis = 1 if K.image_data_format() == 'channels_first' else -1 + if strides > 1: + x = ZeroPadding2D(((0, 1), (0, 1)), data_format=K.image_data_format())(x) + + x = Conv2D(filters // 2, (1, 1), padding='same', name='bottleneck_'+str(block_id)+'_conv_0', + use_bias=False, data_format=K.image_data_format())(x) + + x = BatchNormalization(axis=ch_axis, name='bottleneck_'+str(block_id)+'_bnorm_0')(x) + + if activation == 'relu': + x = ReLU(name='bottleneck_'+str(block_id)+'_relu_0')(x) + elif activation == 'leaky': + x = LeakyReLU(name='bottleneck_'+str(block_id)+'_leaky_0')(x) + else: + assert False + + x = Conv2D(filters // 2, (3, 3), padding=padding, name='bottleneck_'+str(block_id)+'_conv_1', + strides=strides, use_bias=False, data_format=K.image_data_format())(x) + x = BatchNormalization(axis=ch_axis, name='bottleneck_'+str(block_id)+'_bnorm_1')(x) + if activation == 'relu': + x = ReLU(name='bottleneck_'+str(block_id)+'_relu_1')(x) + elif activation == 'leaky': + x = LeakyReLU(name='bottleneck_'+str(block_id)+'_leaky_1')(x) + else: + assert False + + x = Conv2D(filters, (1, 1), padding='same', name='bottleneck_'+str(block_id)+'_conv_2', + use_bias=False, data_format=K.image_data_format())(x) + x = BatchNormalization(axis=ch_axis, name='bottleneck_'+str(block_id)+'_bnorm_2')(x) + if activation == 'relu': + x = ReLU(name='bottleneck_'+str(block_id)+'_relu_2')(x) + elif activation == 'leaky': + x = LeakyReLU(name='bottleneck_'+str(block_id)+'_leaky_2')(x) + else: + assert False + + return x + + def convnet_7(input_shape, activation): + input = Input(shape=input_shape, name='input_1') + x = _bottleneck(input, filters=16, strides=1, activation=activation, block_id=1) + x = _bottleneck(x, filters=32, strides=2, activation=activation, block_id=2) + return Model(inputs=input, outputs=x, name='convnet_7') + + for activation in ['relu', 'leaky']: + model = convnet_7(input_shape=(3, 96, 128), activation=activation) + onnx_model = keras2onnx.convert_keras(model, model.name) + x = np.random.rand(1, 3, 96, 128).astype(np.float32) + expected = model.predict(x) + self.assertTrue(run_onnx_runtime(onnx_model.graph.name, onnx_model, x, expected, self.model_files)) + def test_masking(self): timesteps, features = (3, 5) model = Sequential([