From 3e902c3afc62693a71d672edab9b22e35f7d4776 Mon Sep 17 00:00:00 2001 From: Wenwei Zhang <40779233+ZwwWayne@users.noreply.github.com> Date: Mon, 30 Nov 2020 23:26:01 +0800 Subject: [PATCH] bump to v2.7.0 (#4205) * bump to v2.7.0 * update dates * update version requirements * rephrase * resolve comments --- README.md | 2 +- docs/changelog.md | 41 +++++++++++++++++++++++++++++ docs/get_started.md | 9 ++++--- docs/tutorials/customize_dataset.md | 2 +- mmdet/version.py | 2 +- 5 files changed, 49 insertions(+), 7 deletions(-) diff --git a/README.md b/README.md index 8be7cb75e2c..1a01c4e2c16 100644 --- a/README.md +++ b/README.md @@ -42,7 +42,7 @@ This project is released under the [Apache 2.0 license](LICENSE). ## Changelog -v2.6.0 was released in 1/11/2020. +v2.7.0 was released in 30/11/2020. Please refer to [changelog.md](docs/changelog.md) for details and release history. A comparison between v1.x and v2.0 codebases can be found in [compatibility.md](docs/compatibility.md). diff --git a/docs/changelog.md b/docs/changelog.md index 034e26cfba8..637de72e7e7 100644 --- a/docs/changelog.md +++ b/docs/changelog.md @@ -1,5 +1,46 @@ ## Changelog +### v2.7.0 (30/11/2020) + +- Support new method: [DETR](https://arxiv.org/abs/2005.12872), [ResNest](https://arxiv.org/abs/2004.08955), Faster R-CNN DC5. +- Support YOLO, Mask R-CNN, and Cascade R-CNN models exportable to ONNX. + +#### New Features + +- Support [DETR](https://arxiv.org/abs/2005.12872) (#4201, #4206) +- Support to link the best checkpoint in training (#3773) +- Support to override config through options in inference.py (#4175) +- Support YOLO, Mask R-CNN, and Cascade R-CNN models exportable to ONNX (#4087, #4083) +- Support [ResNeSt](https://arxiv.org/abs/2004.08955) backbone (#2959) +- Support unclip border bbox regression (#4076) +- Add tpfp func in evaluating AP (#4069) +- Support mixed precision training of SSD detector with other backbones (#4081) +- Add Faster R-CNN DC5 models (#4043) + +#### Bug Fixes + +- Fix bug of `gpu_id` in distributed training mode (#4163) +- Support Albumentations with version higher than 0.5 (#4032) +- Fix num_classes bug in faster rcnn config (#4088) +- Update code in docs/2_new_data_model.md (#4041) + +#### Improvements + +- Ensure DCN offset to have similar type as features in VFNet (#4198) +- Add config links in README files of models (#4190) +- Add tutorials for loss conventions (#3818) +- Add solution to installation issues in 30-series GPUs (#4176) +- Update docker version in get_started.md (#4145) +- Add model statistics and polish some titles in configs README (#4140) +- Clamp neg probability in FreeAnchor (#4082) +- Speed up expanding large images (#4089) +- Fix Pytorch 1.7 incompatibility issues (#4103) +- Update trouble shooting page to resolve segmentation fault (#4055) +- Update aLRP-Loss in project page (#4078) +- Clean duplicated `reduce_mean` function (#4056) +- Refactor Q&A (#4045) + + ### v2.6.0 (1/11/2020) - Support new method: [VarifocalNet](https://arxiv.org/abs/2008.13367). diff --git a/docs/get_started.md b/docs/get_started.md index dc4710766c0..a2bfb45b633 100644 --- a/docs/get_started.md +++ b/docs/get_started.md @@ -11,10 +11,11 @@ The compatible MMDetection and MMCV versions are as below. Please install the co | MMDetection version | MMCV version | |:-------------------:|:-------------------:| -| master | mmcv-full>=1.1.5, <=1.3| -| 2.6.0 | mmcv-full>=1.1.5, <=1.3| -| 2.5.0 | mmcv-full>=1.1.5, <=1.3| -| 2.4.0 | mmcv-full>=1.1.1, <=1.3| +| master | mmcv-full>=1.1.5, <1.3| +| 2.7.0 | mmcv-full>=1.1.5, <1.3| +| 2.6.0 | mmcv-full>=1.1.5, <1.3| +| 2.5.0 | mmcv-full>=1.1.5, <1.3| +| 2.4.0 | mmcv-full>=1.1.1, <1.3| | 2.3.0 | mmcv-full==1.0.5| | 2.3.0rc0 | mmcv-full>=1.0.2 | | 2.2.1 | mmcv==0.6.2 | diff --git a/docs/tutorials/customize_dataset.md b/docs/tutorials/customize_dataset.md index d1bdca2003d..146840d7911 100644 --- a/docs/tutorials/customize_dataset.md +++ b/docs/tutorials/customize_dataset.md @@ -412,4 +412,4 @@ data = dict( - Before MMDetection v2.5.0, the dataset will filter out the empty GT images automatically if the classes are set and there is no way to disable that through config. This is an undesirable behavior and introduces confusion because if the classes are not set, the dataset only filter the empty GT images when `filter_empty_gt=True` and `test_mode=False`. After MMDetection v2.5.0, we decouple the image filtering process and the classes modification, i.e., the dataset will only filter empty GT images when `filter_empty_gt=True` and `test_mode=False`, no matter whether the classes are set. Thus, setting the classes only influences the annotations of classes used for training and users could decide whether to filter empty GT images by themselves. - Since the middle format only has box labels and does not contain the class names, when using `CustomDataset`, users cannot filter out the empty GT images through configs but only do this offline. -- The features for setting dataset classes and dataset filtering will be refactored to be more user-friendly in v2.6.0 or v2.7.0 (depends on the progress). +- The features for setting dataset classes and dataset filtering will be refactored to be more user-friendly in v2.8.0 or v2.9.0 (depends on the progress). diff --git a/mmdet/version.py b/mmdet/version.py index 6464e853033..753ab3c2970 100644 --- a/mmdet/version.py +++ b/mmdet/version.py @@ -1,6 +1,6 @@ # Copyright (c) Open-MMLab. All rights reserved. -__version__ = '2.6.0' +__version__ = '2.7.0' short_version = __version__