-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathlr_train_funcs.cpp
246 lines (213 loc) · 8.16 KB
/
lr_train_funcs.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
//==================================================================================
// BSD 2-Clause License
//
// Copyright (c) 2023, Duality Technologies Inc.
//
// All rights reserved.
//
// Author TPOC: [email protected]
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//==================================================================================
#include "lr_train_funcs.h"
#include "pt_matrix.h"
#include "utils/debug.h"
#include "enc_matrix.h"
#include "math.h"
////////////////////////////////////////////////////////////////////////////
// Observe that if we pass in the scalingFactor (e.g lr / numRows) we can save on a multiplication
Mat InitializeLogReg(Mat &X, Mat &y, float scalingFactor) {
/////////////////////////////////////////
// update this for our problem
/////////////////////////////////////////
if (X.size() <= 0) {
std::cerr << "Please provide a data matrix with positive number of rows." << std::endl;
exit(0);
}
#ifdef ENABLE_DEBUG
std::cerr << "Initialization - Input data X (showing only 5 rows): " << std::endl;
Mat Xsub = Mat(X.begin(), X.begin()+5);
PrintMatrix(Xsub);
std::cerr << std::endl;
#endif // ENABLE_DEBUG
// Compute X transpose
//note X tranpose is the same CT packing as x Just labeled differntly since
// X mat_col_major == X' mat_row_major
//copy XT = X
Mat XT = Mat(X.begin(), X.end());
// take negative of XT
MatrixScalarMult(XT, -1.0 * scalingFactor);
#ifdef ENABLE_DEBUG
std::cerr << "Initialization - X transpose (showing only 5 rows, 5 columns): " << std::endl;
Mat XTsub = Mat(5);
for (usint i=0; i<XTsub.size(); i++)
XTsub[i] = Vec(XT[i].begin(), XT[i].begin()+5);
PrintMatrix(XTsub);
std::cerr << std::endl;
#endif // ENABLE_DEBUG
return (XT);
}
///////////////////////////////////////////////////////////////////////////////////////
void EncLogRegCalculateGradient(
CC &cc,
const CT &ctX,
const CT &ctNegXt,
const CT &ctLabels,
CT &ctThetas,
CT &ctGradStoreInto,
const usint rowSize,
const MatKeys &rowKeys,
const MatKeys &colKeys,
const KeyPair &keys,
bool debug,
int chebRangeStart,
int chebRangeEnd,
int chebPolyDegree,
int debugPlaintextLength
) {
OPENFHE_DEBUG_FLAG(false);
// We use the same notation as in
// https://eprint.iacr.org/2018/662.pdf
// It seems like their labels are {-1, 1} which we do not use. Change accordingly
CT ctLogits;
PT dbg;
if (debug) {
cc->Decrypt(keys.secretKey, ctThetas, &dbg);
dbg->SetLength(debugPlaintextLength);
std::cout << "\tDEBUG: Thetas: " << dbg;
cc->Decrypt(keys.secretKey, ctX, &dbg);
dbg->SetLength(debugPlaintextLength);
std::cout << "\tDEBUG: Xs: " << dbg;
}
// Line 4
MatrixVectorProductRow(cc, keys, colKeys, ctX, ctThetas, rowSize, ctLogits);
if (debug) {
cc->Decrypt(keys.secretKey, ctLogits, &dbg);
dbg->SetLength(debugPlaintextLength);
std::cout << "\tLogits: " << dbg;
std::cout << "\tLogits level: " << ctLogits->GetLevel() << "\n" << std::endl;
}
// Line 5/6
auto preds = cc->EvalLogistic(ctLogits, chebRangeStart, chebRangeEnd, chebPolyDegree);
if (debug) {
cc->Decrypt(keys.secretKey, preds, &dbg);
dbg->SetLength(debugPlaintextLength);
std::cout << "\tPreds " << dbg;
std::cout << "\tPreds level (post sigmoid): " << preds->GetLevel() << "\n" << std::endl;
}
// Line 8 - see Page 9 for their notation
OPENFHE_DEBUG("\tPre-Residual");
auto residual = cc->EvalSub(ctLabels, preds);
if (debug) {
cc->Decrypt(keys.secretKey, residual, &dbg);
dbg->SetLength(debugPlaintextLength);
std::cout << "\tResiduals " << dbg;
std::cout << "\tResidual level: " << residual->GetLevel() << "\n" << std::endl;
}
MatrixVectorProductCol(cc, rowKeys, ctNegXt, residual, rowSize, ctGradStoreInto);
if (debug) {
cc->Decrypt(keys.secretKey, ctGradStoreInto, &dbg);
dbg->SetLength(debugPlaintextLength);
std::cout << "\tScaled gradients: " << dbg;
std::cout << "\tctGrad store into level: " << ctGradStoreInto->GetLevel() << "\n" << std::endl;
}
}
///////////////////////////////////////////////////////////////
void BoundCheckMat(const Mat &inMat, const double bound) {
usint numRows = inMat.size();
usint numCols = inMat[0].size();
//yes this is slow...
for (usint i = 0; i < numRows; i++) {
for (usint j = 0; j < numCols; j++) {
if (abs((int) inMat[i][j]) >= (int) bound) {
std::cout << "element at [" << i << "," << j << "] is " << inMat[i][j] << " bounds " << bound << std::endl;
}
}
}
}
////////////////////////////////const//////////////////////////////
PT ReEncrypt(CC &cc, CT &ctx, const KeyPair &keys) {
OPENFHE_DEBUG_FLAG(false);
OPENFHE_DEBUG("In ReEncrypt");
// reencrypt x
PT xPT;
OPENFHE_DEBUG("Decrypt");
cc->Decrypt(keys.secretKey, ctx, &xPT);
Vec x = xPT->GetRealPackedValue();
xPT = cc->MakeCKKSPackedPlaintext(x);
OPENFHE_DEBUG("Encrypt() ");
ctx = cc->Encrypt(keys.publicKey, xPT);
return xPT; //return this for debug purposes...
}
int ReturnDepth(const CT &ct) {
auto mulDepth = ct->GetElements()[0].GetNumOfElements() - 1;
auto scaling = ct->GetScalingFactor();
std::cout << "mult Depth: " << mulDepth << " Scaling: " << scaling << std::endl;
return (mulDepth);
}
double ComputeLoss(const Mat &b, const Mat &X, const Mat &y) {
// Based off of https://stackoverflow.com/a/47798689/18031872
OPENFHE_DEBUG_FLAG(false);
OPENFHE_DEBUG("In ComputeLoss");
usint numSamp = X.size(); //n_samp
/////////////////////////////////////////////////////////////////
//Calculate t1: matmul(-y.T, log(yHat)
/////////////////////////////////////////////////////////////////
//yHat = sigmoid(X * beta);
Mat yHat = Mat(numSamp, Vec(1, 0.0));
MatrixMult(X, b, yHat);
MatrixSigmoid(yHat);
// log(yHat)
Mat logYHat = Mat(numSamp, Vec(1, 0.0));
MatrixLog(yHat, logYHat);
Mat yT = Mat(y[0].size(), Vec(y.size(), 0.0));
MatrixTransp(y, yT);
MatrixScalarMult(yT, -1);
Mat t1Mat = Mat(1, Vec(1, 0.0));
MatrixMult(yT, logYHat, t1Mat);
//PrintMatrix(t1Mat);
/////////////////////////////////////////////////////////////////
//t2: matmult(
// t2_a,
// t2_b
// )
// t2_a = 1 - y.T
// t2_b = log(1 - yHat)
/////////////////////////////////////////////////////////////////
// from earlier it exists as -yT. We change it back here
// so we can do a sub. Less confusing for newer readers
Mat t2Mat_a = Mat(yT.size(), Vec(yT[0].size(), 0.0));
MatrixScalarMult(yT, -1);
// Getting t2_a
ScalarSubMat(1, yT, t2Mat_a);
OPENFHE_DEBUG("Got t2_a: 1-yT");
Mat t2Mat_b = Mat(y.size(), Vec(1, 0.0));
ScalarSubMat(1, yHat, t2Mat_b);
MatrixLog(t2Mat_b, t2Mat_b);
OPENFHE_DEBUG("Got t2_b: log(1-yHat)");
Mat t2Mat = Mat(1, Vec(1, 0.0));
MatrixMult(t2Mat_a, t2Mat_b, t2Mat);
// Should now have a Mat Scalar that we add up
Mat loglikelihood = Mat(1, Vec(1, 0.0));
MatrixMatrixSub(t1Mat, t2Mat, loglikelihood);
return loglikelihood[0][0] / double(numSamp);
}