-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbatch_common.py
169 lines (146 loc) · 5.7 KB
/
batch_common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
"""Shared facilities for running non-Spark ingestion on Google Batch."""
from __future__ import annotations
import json
import os
import tempfile
from dataclasses import dataclass
from datetime import datetime, timezone
from subprocess import run
import pandas as pd
@dataclass
class DataSourceBase:
"""A base dataclass to describe data source parameters for ingestion."""
# GCP parameters.
gcp_project = "open-targets-genetics-dev"
gcp_region = "europe-west1"
# GCP paths.
gcp_staging_path = "gs://gentropy-tmp/batch/staging"
gcp_output_path = "gs://gentropy-tmp/batch/output"
# Data source parameters.
max_parallelism: int = 500 # How many ingestion tasks to run concurrently.
cpu_per_task: int = 4 # How many CPUs use per ingestion task.
mem_per_task_gb: float = (
4.0 # How many GB of RAM to allocate per CPU for each ingestion job.
)
def _get_number_of_tasks(self) -> int:
"""Return the total number of ingestion tasks for the data source.
Returns:
int: Total number of ingestion tasks.
Raises:
NotImplementedError: Always, because this method needs to be implemented by each specific data source class.
"""
raise NotImplementedError(
"The get_number_of_tasks() method must be implemented by data source classes."
)
def _generate_job_config(
self,
job_id: str,
output_filename: str,
) -> None:
"""Generate configuration for a Google Batch job.
Args:
job_id (str): A unique job ID to identify a Google Batch job.
output_filename (str): Output filename to store generated job config.
"""
number_of_tasks = self._get_number_of_tasks()
config = {
"taskGroups": [
{
"taskSpec": {
"runnables": [
{
"script": {
"text": f"bash /mnt/share/code/runner.sh {job_id} {self.data_source_name}",
}
}
],
"computeResource": {
"cpuMilli": self.cpu_per_task * 1000,
"memoryMib": int(
self.cpu_per_task * self.mem_per_task_gb * 1024
),
},
"volumes": [
{
"gcs": {"remotePath": "gentropy-tmp/batch/staging"},
"mountPath": "/mnt/share",
}
],
"maxRetryCount": 1,
"maxRunDuration": "3600s",
},
"taskCount": number_of_tasks,
"parallelism": min(number_of_tasks, self.max_parallelism),
}
],
"allocationPolicy": {
"instances": [
{
"policy": {
"machineType": f"n2d-highmem-{self.cpu_per_task}",
"provisioningModel": "SPOT",
}
}
]
},
"logsPolicy": {"destination": "CLOUD_LOGGING"},
}
with open(output_filename, "w") as outfile:
outfile.write(json.dumps(config, indent=4))
def _get_study_index_location(self):
return f"{self.gcp_output_path}/{self.data_source_name}/study_index.tsv"
def _get_summary_stats_location(self):
return f"{self.gcp_output_path}/{self.data_source_name}/summary_stats.parquet"
def _get_study_index(self):
return pd.read_table(self._get_study_index_location())
def _get_number_of_tasks(self):
return len(self._get_study_index())
def deploy_code_to_storage(self) -> None:
"""Deploy code to Google Storage."""
run(
[
"gsutil",
"-m",
"-q",
"cp",
"-r",
".",
f"{self.gcp_staging_path}/code",
],
check=False,
)
def submit_summary_stats_ingestion(self) -> None:
"""Submit job for processing on Google Batch."""
# Build job ID.
current_utc_time = datetime.now(timezone.utc)
formatted_time = current_utc_time.strftime("%Y%m%d-%H%M%S")
batch_safe_name = self.data_source_name.replace("_", "-")
job_id = f"{batch_safe_name}-{formatted_time}"
# Generate job config.
job_config_file = tempfile.NamedTemporaryFile(delete=False)
self._generate_job_config(job_id, job_config_file.name)
# Submit Google Batch job.
run(
[
"gcloud",
"batch",
"jobs",
"submit",
job_id,
f"--config={job_config_file.name}",
f"--project={self.gcp_project}",
f"--location={self.gcp_region}",
],
check=False,
)
os.remove(job_config_file.name)
def ingest_study_index(self) -> None:
"""Ingests study index and stores it in a remote location."""
raise NotImplementedError(
"The ingest_study_index method must be implemented by data source classes."
)
def ingest_single_summary_stats(self, task_index: int) -> None:
"""Ingest data for a single file from the data source."""
raise NotImplementedError(
"The ingest_single_summary_stats() method must be implemented by data source classes."
)