diff --git a/python/src/MixtureFactory_doc.i.in b/python/src/MixtureFactory_doc.i.in index b583c81..1005d96 100644 --- a/python/src/MixtureFactory_doc.i.in +++ b/python/src/MixtureFactory_doc.i.in @@ -22,7 +22,30 @@ References - Biernacki C., Celeux G., Govaert G., Langrognet F., (2006). Model-Based Cluster and Discriminant Analysis with the MIXMOD Software. - Computational Statistics and Data Analysis, vol. 51/2, pp. 587-600." + Computational Statistics and Data Analysis, vol. 51/2, pp. 587-600. + +Examples +-------- +Estimate the parameters of the mixture of 2 Gaussians. + +>>> import openturns as ot +>>> import otmixmod + +>>> factory = otmixmod.MixtureFactory(2, 'Gaussian_pk_L_Dk_A_Dk') +>>> sample = [ +... [1.5, 0.7], +... [0.2, -0.6], +... [2.1, 0.1], +... [1.2, 2.4], +... [2.2, 0.0], +... [-0.9, -2.1], +... [-1.7, -0.3], +... [0.7, 0.4], +... [-1.2, 1.1], +... [-0.5, -1.1], +... ] +>>> estimatedDistribution, labels, logLikelihood = factory.build(sample) +" // ---------------------------------------------------------------------------- @@ -91,3 +114,23 @@ Examples >>> otmixmod.MixtureFactory.GetValidCovarianceModels()[:3] [Gaussian_p_L_I,Gaussian_p_Lk_I,Gaussian_p_L_B] " + +// ---------------------------------------------------------------------------- + +%feature("docstring") OTMIXMOD::MixtureFactory::BuildClusters +"Partition a given sample into nbClusters according to the given labels. + +Parameters +---------- +data : 2-d sequence of float + The sample +labels : sequence of int + The index of the class of each point in the sample +nbClusters : int + The number of clusters in the mixture + +Returns +------- +clusters : sequence of :class:`openturns.Sample` + The list of samples corresponding to each class +"