-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathliveness.sml
175 lines (164 loc) · 5.86 KB
/
liveness.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
(* liveness.sml
*
* Liveness analysis and interference graph construction.
* This is part of a simple graph-coloring register allocator.
* The design is based on Andrew Appel's book "Modern Compiler
* Implementation in ML".
*
* Copyright (c) 2005 by Matthias Blume ([email protected])
*)
structure Liveness : sig
structure IGraph: GRAPH
datatype igraph =
IGRAPH of
{
(* graph: edges between interfering nodes,
* We treat the graph as an UNDIRECTED graph
* (even though the IGraph module implements
* directed graphs) by using the following
* invariant:
* An interference between v and w is represented
* as a directed edge between the "smaller" node
* to the "larger" node where "smaller" is defined
* in terms of LVar.compare. *)
graph: IGraph.graph,
(* tnode: mapping from lvars to their corresponding
* nodes in the interference graph *)
tnode: LVar.lvar -> IGraph.node,
(* gtemp: inverse of tnode *)
gtemp: IGraph.node -> LVar.lvar,
(* List of move-related nodes: *)
moves: (IGraph.node * IGraph.node) list
}
val interferenceGraph:
(* first parameter is the flow graph;
* second parameter lists all flow graph nodes in (roughly)
* "forward" order (meaning that if n is a predecessor of m,
* then n tends to appear to the left of m in the list) *)
Flow.flowgraph * Flow.Graph.node list ->
{ igraph: igraph, liveOut: Flow.Graph.node -> LVar.lvar list }
val show: TextIO.outstream * (LVar.lvar -> string) * igraph -> unit
end = struct
structure IGraph :> GRAPH = Graph
structure G = IGraph
structure GT = G.Map
structure F = Flow
structure FG = F.Graph
structure FGT = FG.Map
structure T = LVar
structure TS = T.Set
structure TT = T.Map
datatype igraph =
IGRAPH of { graph: IGraph.graph,
tnode: LVar.lvar -> IGraph.node,
gtemp: IGraph.node -> LVar.lvar,
moves: (IGraph.node * IGraph.node) list }
type liveset = TS.set
type livemap = liveset FGT.map
fun interferenceGraph (F.FGRAPH { control, def, use, ismove }, fgnl) =
let val cnodes = rev fgnl (* process nodes in "backward" order *)
fun live lm n =
case FGT.find (lm, n) of
SOME ls => ls
| NONE => TS.empty
(* walk over list of nodes, maintain "live out" and "live in"
* sets on a per-node basis; maintain a "change" flag,
* which -- when false -- tells us that the fixpoint iteration
* has settled; keep iterating over list of nodes until
* fixpoint is reached: *)
fun iterate ([], lom, lim, true) =
( (* print "."; *) iterate (cnodes, lom, lim, false))
| iterate ([], lom, lim, false) = lom
| iterate (n :: ns, lom, lim, change) =
let val lo = live lom n
val lo' =
foldl TS.union TS.empty (map (live lim) (FG.succ n))
val change' = change orelse not (TS.equal (lo, lo'))
val lom' = FGT.insert (lom, n, lo')
val u = valOf (FGT.find (use, n))
val d = valOf (FGT.find (def, n))
val li' = TS.union (u, TS.difference (lo', d))
val lim' = FGT.insert (lim, n, li')
in iterate (ns, lom', lim', change')
end
(* run it with change = true to initialize lim properly *)
val liveOutMap = iterate (cnodes, FGT.empty, FGT.empty, true)
(* now initialize the interference graph that we
* are about to build: *)
val ig = G.newGraph ()
local
(* a handy mapping from lvars to nodes: *)
val tmap = ref (TT.empty)
(* an equally handy mapping from nodes to lvars: *)
val nmap = ref (GT.empty)
in
(* tnode maps lvars to nodes, it generates and inserts
* new nodes as needed *)
fun tnode t =
case TT.find (!tmap, t) of
SOME n => n
| NONE =>
let val n = G.newNode ig
in tmap := TT.insert (!tmap, t, n);
nmap := GT.insert (!nmap, n, t);
n
end
(* gtemp is the inverse mapping; we don't use it here
* but return it as part of the result *)
fun gtemp n = valOf (GT.find (!nmap, n))
end
(* process one node at a time, "ml" holds the
* list of accumulated moves: *)
fun interference (fgn, ml) =
let val u = valOf (FGT.find (use, fgn))
val d = valOf (FGT.find (def, fgn))
val lo = live liveOutMap fgn
infix <?
fun x <? s = TS.member (s, x)
val ism = Option.getOpt (FGT.find (ismove, fgn), false)
val ml' =
if ism then
(tnode (hd (TS.listItems u)),
tnode (hd (TS.listItems d))) :: ml
else ml
fun oned d =
(* deal with one defined variable d:
* compare it to every live-out variable lo,
* record interference unless d = lo or
* the instruction is a move whose source
* is lo: *)
let fun edge (x, y) =
let val xn = tnode x
val yn = tnode y
in case LVar.compare (x, y) of
LESS => G.mk_edge { from = xn, to = yn }
| _ => G.mk_edge { from = yn, to = xn }
end
fun onelo lo =
if d=lo orelse ism andalso lo <? u then ()
else edge (d, lo)
in TS.app onelo lo
end
in TS.app oned d; ml'
end
val moves = foldl interference [] cnodes
in { igraph = IGRAPH { graph = ig, tnode = tnode,
gtemp = gtemp, moves = moves },
liveOut = TS.listItems o live liveOutMap }
end
fun show (s, mkstr, IGRAPH { graph = g, moves = m, gtemp, ... }) =
let fun name n = mkstr (gtemp n)
fun oneNode n = let
fun oneAdj a = TextIO.output (s, " " ^ mkstr a)
in TextIO.output (s, mkstr (gtemp n) ^ ":");
TS.app oneAdj (TS.addList (TS.empty, (map gtemp (G.adj n))));
TextIO.output (s, "\n")
end
fun oneMove (u, d) =
TextIO.output (s, concat [name u, " -> ", name d, "\n"])
in TextIO.output (s, "INTERFERENCES:\n");
app oneNode (G.nodes g);
TextIO.output (s, "MOVES:\n");
app oneMove m
end
end