-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmodels.py
163 lines (136 loc) · 6.49 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import numpy as np
import tensorflow as tf
import tensorflow.keras as keras
from tensorflow.keras import regularizers
from tensorflow.keras import losses
# Models.
def linear_model(num_labels, input_shape, l2_reg=0.02):
linear_model = keras.models.Sequential([
keras.layers.Flatten(input_shape=input_shape),
keras.layers.Dense(num_labels, activation=None, name='out',
kernel_regularizer=regularizers.l2(l2_reg))
])
return linear_model
def linear_softmax_model(num_labels, input_shape, l2_reg=0.02):
linear_model = keras.models.Sequential([
keras.layers.Flatten(input_shape=input_shape),
keras.layers.Dense(num_labels, activation=tf.nn.softmax, name='out',
kernel_regularizer=regularizers.l2(l2_reg))
])
return linear_model
def mlp_softmax_model(num_labels, input_shape, l2_reg=0.02):
linear_model = keras.models.Sequential([
keras.layers.Flatten(input_shape=input_shape),
keras.layers.Dense(32, activation=tf.nn.relu,
kernel_regularizer=regularizers.l2(0.0)),
keras.layers.Dense(32, activation=tf.nn.relu,
kernel_regularizer=regularizers.l2(0.0)),
keras.layers.BatchNormalization(),
keras.layers.Dense(num_labels, activation=tf.nn.softmax, name='out',
kernel_regularizer=regularizers.l2(l2_reg))
])
return linear_model
def simple_softmax_conv_model(num_labels, hidden_nodes=32, input_shape=(28,28,1), l2_reg=0.0):
return keras.models.Sequential([
keras.layers.Conv2D(hidden_nodes, (5,5), (2, 2), activation=tf.nn.relu,
padding='same', input_shape=input_shape),
keras.layers.Conv2D(hidden_nodes, (5,5), (2, 2), activation=tf.nn.relu,
padding='same'),
keras.layers.Conv2D(hidden_nodes, (5,5), (2, 2), activation=tf.nn.relu,
padding='same'),
keras.layers.Dropout(0.5),
keras.layers.BatchNormalization(),
keras.layers.Flatten(name='after_flatten'),
# keras.layers.Dense(64, activation=tf.nn.relu),
keras.layers.Dense(num_labels, activation=tf.nn.softmax, name='out')
])
def deeper_softmax_conv_model(num_labels, hidden_nodes=32, input_shape=(28,28,1), l2_reg=0.0):
return keras.models.Sequential([
keras.layers.Conv2D(hidden_nodes, (5,5), (1, 1), activation=tf.nn.relu,
padding='same', input_shape=input_shape),
keras.layers.Conv2D(hidden_nodes, (5,5), (2, 2), activation=tf.nn.relu,
padding='same', input_shape=input_shape),
keras.layers.Conv2D(hidden_nodes, (5,5), (2, 2), activation=tf.nn.relu,
padding='same'),
keras.layers.Conv2D(hidden_nodes, (5,5), (2, 2), activation=tf.nn.relu,
padding='same'),
keras.layers.Dropout(0.5),
keras.layers.BatchNormalization(),
keras.layers.Flatten(name='after_flatten'),
# keras.layers.Dense(64, activation=tf.nn.relu),
keras.layers.Dense(num_labels, activation=tf.nn.softmax, name='out')
])
def unregularized_softmax_conv_model(num_labels, hidden_nodes=32, input_shape=(28,28,1), l2_reg=0.0):
return keras.models.Sequential([
keras.layers.Conv2D(hidden_nodes, (5,5), (2, 2), activation=tf.nn.relu,
padding='same', input_shape=input_shape),
keras.layers.Conv2D(hidden_nodes, (5,5), (2, 2), activation=tf.nn.relu,
padding='same'),
keras.layers.Conv2D(hidden_nodes, (5,5), (2, 2), activation=tf.nn.relu,
padding='same'),
keras.layers.Flatten(name='after_flatten'),
# keras.layers.Dense(64, activation=tf.nn.relu),
keras.layers.Dense(num_labels, activation=tf.nn.softmax, name='out')
])
def keras_mnist_model(num_labels, input_shape=(28,28,1)):
model = keras.models.Sequential()
model.add(keras.layers.Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(keras.layers.Conv2D(64, (3, 3), activation='relu'))
model.add(keras.layers.MaxPooling2D(pool_size=(2, 2)))
model.add(keras.layers.Dropout(0.25))
model.add(keras.layers.Flatten())
model.add(keras.layers.Dense(128, activation='relu'))
model.add(keras.layers.Dropout(0.5))
model.add(keras.layers.Dense(num_labels, activation='softmax'))
return model
def unregularized_keras_mnist_model(num_labels, input_shape=(28,28,1)):
model = keras.models.Sequential()
model.add(keras.layers.Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(keras.layers.Conv2D(64, (3, 3), activation='relu'))
model.add(keras.layers.MaxPooling2D(pool_size=(2, 2)))
model.add(keras.layers.Flatten())
model.add(keras.layers.Dense(128, activation='relu'))
model.add(keras.layers.Dense(num_labels, activation='softmax'))
return model
def papernot_softmax_model(num_labels, input_shape=(28,28,1), l2_reg=0.0):
papernot_conv_model = keras.models.Sequential([
keras.layers.Conv2D(64, (8, 8), (2,2), activation=tf.nn.relu,
padding='same', input_shape=input_shape),
keras.layers.Conv2D(128, (6,6), (2,2), activation=tf.nn.relu,
padding='valid'),
keras.layers.Conv2D(128, (5,5), (1,1), activation=tf.nn.relu,
padding='valid'),
keras.layers.BatchNormalization(),
keras.layers.Flatten(name='after_flatten'),
keras.layers.Dense(num_labels, activation=tf.nn.softmax, name='out')
])
return papernot_conv_model
# Losses.
def sparse_categorical_hinge(num_classes):
def loss(y_true,y_pred):
y_true = tf.reduce_mean(y_true, axis=1)
y_true = tf.one_hot(tf.cast(y_true, dtype=tf.int32), depth=num_classes)
return losses.categorical_hinge(y_true, y_pred)
return loss
def sparse_categorical_ramp(num_classes):
def loss(y_true,y_pred):
y_true = tf.reduce_mean(y_true, axis=1)
y_true = tf.one_hot(tf.cast(y_true, dtype=tf.int32), depth=num_classes)
return tf.sqrt(losses.categorical_hinge(y_true, y_pred))
return loss
def get_loss(loss_name, num_classes):
if loss_name == 'hinge':
loss = sparse_categorical_hinge(num_classes)
elif loss_name == 'ramp':
loss = sparse_categorical_ramp(num_classes)
elif loss_name == 'ce':
loss = losses.sparse_categorical_crossentropy
elif loss_name == 'categorical_ce':
loss = losses.categorical_crossentropy
else:
raise ValueError("Cannot parse loss %s", loss_name)
return loss