-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathutils.py
102 lines (81 loc) · 3.61 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import numpy as np
from tensorflow.keras.models import load_model
import tensorflow as tf
def rand_seed(seed):
np.random.seed(seed)
tf.compat.v1.set_random_seed(seed)
def self_train_once(student, teacher, unsup_x, confidence_q=0.1, epochs=20):
# Do one bootstrapping step on unsup_x, where pred_model is used to make predictions,
# and we use these predictions to update model.
logits = teacher.predict(np.concatenate([unsup_x]))
confidence = np.amax(logits, axis=1) - np.amin(logits, axis=1)
alpha = np.quantile(confidence, confidence_q)
indices = np.argwhere(confidence >= alpha)[:, 0]
preds = np.argmax(logits, axis=1)
student.fit(unsup_x[indices], preds[indices], epochs=epochs, verbose=False)
def soft_self_train_once(student, teacher, unsup_x, epochs=20):
probs = teacher.predict(np.concatenate([unsup_x]))
student.fit(unsup_x, probs, epochs=epochs, verbose=False)
def self_train(student_func, teacher, unsup_x, confidence_q=0.1, epochs=20, repeats=1,
target_x=None, target_y=None, soft=False):
accuracies = []
for i in range(repeats):
student = student_func(teacher)
if soft:
soft_self_train_once(student, teacher, unsup_x, epochs)
else:
self_train_once(student, teacher, unsup_x, confidence_q, epochs)
if target_x is not None and target_y is not None:
_, accuracy = student.evaluate(target_x, target_y, verbose=True)
accuracies.append(accuracy)
teacher = student
return accuracies, student
def gradual_self_train(student_func, teacher, unsup_x, debug_y, interval, confidence_q=0.1,
epochs=20, soft=False):
upper_idx = int(unsup_x.shape[0] / interval)
accuracies = []
for i in range(upper_idx):
student = student_func(teacher)
cur_xs = unsup_x[interval*i:interval*(i+1)]
cur_ys = debug_y[interval*i:interval*(i+1)]
# _, student = self_train(
# student_func, teacher, unsup_x, confidence_q, epochs, repeats=2)
if soft:
soft_self_train_once(student, teacher, cur_xs, epochs)
else:
self_train_once(student, teacher, cur_xs, confidence_q, epochs)
_, accuracy = student.evaluate(cur_xs, cur_ys)
accuracies.append(accuracy)
teacher = student
return accuracies, student
def split_data(xs, ys, splits):
return np.split(xs, splits), np.split(ys, splits)
def train_to_acc(model, acc, train_x, train_y, val_x, val_y):
# Modify steps per epoch to be around dataset size / 10
# Keep training until accuracy
batch_size = 32
data_size = train_x.shape[0]
steps_per_epoch = int(data_size / 50.0 / batch_size)
logger.info("train_xs size is %s", str(train_x.shape))
while True:
model.fit(train_x, train_y, batch_size=batch_size, steps_per_epoch=steps_per_epoch, verbose=False)
val_accuracy = model.evaluate(val_x, val_y, verbose=False)[1]
logger.info("validation accuracy is %f", val_accuracy)
if val_accuracy >= acc:
break
return model
def save_model(model, filename):
model.save(filename)
def load_model(filename):
model = load_model(filename)
def rolling_average(sequence, r):
N = sequence.shape[0]
assert r < N
assert r > 1
rolling_sums = []
cur_sum = sum(sequence[:r])
rolling_sums.append(cur_sum)
for i in range(r, N):
cur_sum = cur_sum + sequence[i] - sequence[i-r]
rolling_sums.append(cur_sum)
return np.array(rolling_sums) * 1.0 / r