-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgari_analysis_functions.py
432 lines (354 loc) · 16.2 KB
/
gari_analysis_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
from scipy import signal
from matplotlib.patches import Ellipse
import numpy as np
# Copied from connectivity_direction_orientation_stats.ipynb
def conns4post(conns, post_id):
return conns[np.where(conns[:, 1] == post_id)[0], :]
def get_conns_for_posts(conns, posts_list):
out = None
first = True
for post_id in posts_list:
if first:
out = conns4post(conns, post_id)
first = False
else:
out = np.append(conns4post(conns, post_id))
return out
def get_variance_ellipse(conns, width, height):
'''Compute the variance of the location of the input neurons.
:param conns: connections for A post-synaptic neuron, formated as FromListConnector
:param width: width of the input population "image"
:param height: height of the input population "image"
:return centre: (x, y) the centre point of the variance ellipse
:return shape: (width, height) the shape of the variance ellipse
:return angle: orientation of the variance ellipse
'''
pres = conns[:, 0]
ys, xs = pres // width, pres % width
cov = np.cov(xs, ys)
if len(np.where(np.isnan(cov))[0]) > 0 or \
len(np.where(np.isinf(cov))[0]) > 0:
return (0, 0), (0, 0), 0
_lambda, v = np.linalg.eig(cov)
_lambda = np.sqrt(_lambda)
if len(np.where(np.isnan(_lambda))[0]) > 0 or \
len(np.where(np.isinf(_lambda))[0]) > 0:
return (0, 0), (0, 0), 0
angle = np.rad2deg(np.arccos(v[0, 0]))
centre_x, centre_y = np.mean(xs), np.mean(ys)
ellipse_width, ellipse_height = _lambda[0], _lambda[1]
return (centre_x, centre_y), (ellipse_width, ellipse_height), angle
def a2i(angle, angle_step):
'''convert an angle (in degrees) into an index in the array
:param angle: input angle
:param angle_step: angle step with which the total angle (e.g. 360 degrees) r
ange is divided
:return index: index in the array which corresponds to the input angle
'''
return np.int32(angle // angle_step)
def i2a(index, angle_step):
'''convert an index in an array into an angle (in degrees)
:param index: input index of the array
:param angle_step: angle step with which the total angle (e.g. 360 degrees)
range is divided
:return angle: angle which corresponds to the input index in the array
'''
return index * angle_step
def get_opp_ang(ang):
'''get the opposite direction angle
:param ang: preferred direction angle
:return opp_ang: the opposite direction (pref+180 degrees) wrapped-around
360 degrees which keeps the angle in the range (0, 359)
when using integers
'''
return ((ang + 180) % 360)
def get_dists(pref_ang, angles, angle_step):
'''get angular distances from the prefered direction at a sampling rate
proportional to angle_step (wrapped around 360 degrees)
:param pref_ang: preferred direction angle
:param angles: angle list used in the experiments, should have been sampled
using angle_step
:param angle_step: angle sampling step
:return prf_d, opp_d: angular distances to the prefered direction and the
opposite direction, respectively
'''
opp_ang = get_opp_ang(pref_ang)
prf_d = np.array(angles).copy()
opp_d = np.array(angles).copy()
prf_d -= 180
prf_d[:] = np.abs(prf_d)
prf_d[:] = np.roll(prf_d, opp_ang // angle_step)
opp_d -= 180
opp_d[:] = np.abs(opp_d)
opp_d[:] = np.roll(opp_d, pref_ang // angle_step)
return prf_d, opp_d
def exp_d(dist, sigma):
'''helper to compute a normalized exponentially-decaying distance/gaussian
:param dist: distance measurment
:param sigma: standard deviation / how wide the gaussian should be
:return exp distance:
'''
eee = np.exp(-(dist ** 2) / (2 * (sigma ** 2)))
return eee / np.max(eee)
def get_model(per_ang_responses, pref_angle, angles, angle_step, sigma):
'''dual exponential model for angle responses
http://tips.vhlab.org/data-analysis/measures-of-orientation-and-direction-selectivity
:param per_ang_responses: (average) response of neuron to a moving bar at
particular angle
:param pref_angle: prefered direction
:param angles: angle list used in the experiments
:param angle_step: angle sampling step
:param sigma: standard deviation / how wide the gaussian should be
:return model:
'''
prf_d, opp_d = get_dists(pref_angle, angles, angle_step)
prf_e, opp_e = exp_d(prf_d, sigma), exp_d(opp_d, sigma)
prf_r = per_ang_responses[a2i(pref_angle, angle_step)]
opp_r = per_ang_responses[a2i(get_opp_ang(pref_angle), angle_step)]
return prf_r * prf_e + opp_r * opp_e
def build_pop_models(per_ang_responses, pop_size, pref_angle, angles,
angle_step, sigma):
'''build double exponential model for each neuron in population
http://tips.vhlab.org/data-analysis/measures-of-orientation-and-direction-selectivity
:param per_ang_responses: (average) response of population to a moving bar at
particular angle
:param pref_angle: prefered direction
:param angles: angle list used in the experiments
:param angle_step: angle sampling step
:param sigma: standard deviation / how wide the gaussian should be
:return models:
'''
models = np.empty((pop_size, angles.size))
for neuron_id in range(pop_size):
models[neuron_id, :] = get_model(per_ang_responses[neuron_id, :],
pref_angle, angles, angle_step, sigma)
return models
def conv_model(responses, width, sigma):
'''build a circular convolution model using a Gaussian kernel (soften the
signal)
:param responses: (average) response of neuron to a moving bar at
particular angle
:param width: kernel width
:param sigma: Gaussian kernel standard deviation / wide
'''
hw = int(width // 2)
tmp = np.empty(responses.size + 2 * hw)
tmp[:hw] = responses[-hw:]
tmp[-hw:] = responses[:hw]
tmp[hw:-hw] = responses
gsn = signal.gaussian(width, sigma)
gsn /= gsn.sum()
cnv = np.convolve(tmp, gsn, mode='same')
return cnv[hw: -hw]
def get_wosi(model, pref_angle, angle_step, delta_angle=30):
'''build a ranged Orientation Selectivity Index, instead of taking a single
measurement at the prefered direction angle we take the sum of responses in
the range of +/- delta_angle. This measures how much higher is the response
to the preferred angle stimulus when compared to orthogonal angles
(+/- 90 degrees).
:param model: filtered responses per angle for A neuron
:param pref_angle: prefered direction angle
:param angle_step: angle sampling step for experiments
:param delta_angle: angle range limit to sample responses (+/- delta deg)
:return orientation selectivity index:
'''
prf_range = np.array([(pref_angle + a) % 360 \
for a in range(-delta_angle, delta_angle + 1, 1)])
prfi = a2i(prf_range, angle_step)
prfs = np.sum(model[prfi])
ort_ang = (pref_angle + 90) % 360
ort_range = np.array([(ort_ang + a) % 360 \
for a in range(-delta_angle, delta_angle + 1, 1)])
orti = a2i(ort_range, angle_step)
orts = np.sum(model[orti])
ort_ang = (pref_angle - 90) % 360
ortrange = np.array([(ort_ang + a) % 360 \
for a in range(-delta_angle, delta_angle + 1, 1)])
orti = a2i(ort_range, angle_step)
orts += np.sum(model[orti])
osi = (prfs - orts) / prfs
return np.clip(osi, 0, 1.0)
def get_osi(model, pref_angle, angle_step):
'''compute Orientation Selectivity Index taking a single measurement at
the prefered direction angle. This measures how much higher is the response
to the preferred angle stimulus when compared to orthogonal angles
(+/- 90 degrees).
:param model: filtered responses per angle for A neuron
:param pref_angle: prefered direction angle
:param angle_step: angle sampling step for experiments
:return orientation selectivity index:
'''
prfi = a2i(pref_angle, angle_step)
ort_angle = (pref_angle + 90) % 360
orti = a2i(ort_angle, angle_step)
orts = model[orti]
ort_angle = (pref_angle - 90) % 360
orti = a2i(ort_angle, angle_step)
orts += model[orti]
osi = (model[prfi] - orts) / model[prfi]
return np.clip(osi, 0., np.inf)
def get_wdsi(model, pref_angle, angle_step, delta_angle=30):
'''build a ranged Direction Selectivity Index, instead of taking a single
measurement at the prefered direction angle we take the sum of responses in
the range of +/- delta_angle. This measures how much higher is the response
to the preferred angle stimulus when compared to opposite (+180 degrees).
:param model: filtered responses per angle for A neuron
:param pref_angle: prefered direction angle
:param angle_step: angle sampling step for experiments
:param delta_angle: angle range limit to sample responses (+/- delta deg)
:return direction selectivity index:
'''
prf_range = np.array([(pref_angle + a) % 360 \
for a in range(-delta_angle, delta_angle + 1, 1)])
opp_ang = get_opp_ang(pref_angle)
opp_range = np.array([(opp_ang + a) % 360 \
for a in range(-delta_angle, delta_angle + 1, 1)])
prfi = a2i(prf_range, angle_step)
oppi = a2i(opp_range, angle_step)
prfs = np.sum(model[prfi])
opps = np.sum(model[oppi])
dsi = (prfs - opps) / prfs
return np.clip(dsi, 0, np.inf)
def get_dsi(model, pref_angle, angle_step):
'''compute Direction Selectivity Index taking a single measurement at
the prefered direction angle. This measures how much higher is the response
to the preferred angle stimulus when compared to opposite (+180 degrees).
:param model: filtered responses per angle for A neuron
:param pref_angle: prefered direction angle
:param angle_step: angle sampling step for experiments
:return direction selectivity index:
'''
opp_angle = (pref_angle + 180) % 360
prfi = a2i(pref_angle, angle_step)
oppi = a2i(opp_angle, angle_step)
return (model[prfi] - model[oppi]) / model[prfi]
def build_all_dsi(responses, angles, angle_step, sigma,
do_double_gauss=False, wide=True, wide_delta_angle=30):
model = np.empty_like(responses)
dsi = np.zeros(responses.shape[0])
for neuron_id in range(responses.shape[0]):
pref_angle = i2a(np.argmax(responses[neuron_id]), angle_step)
if do_double_gauss:
model[neuron_id, :] = get_model(responses[neuron_id, :],
pref_angle, angles, angle_step, sigma)
else:
model[neuron_id, :] = responses[neuron_id, :]
if wide:
dsi[neuron_id] = get_wdsi(model[neuron_id, :], pref_angle,
angle_step, delta_angle=wide_delta_angle)
else:
dsi[neuron_id] = get_dsi(model[neuron_id, :], pref_angle, angle_step)
return dsi
def get_random_posts(n_conns, width, height, roi=(8, 8, 24, 24)):
# roi == region of interest (top, left, bottom, right)
if roi is not None:
rows = np.repeat(np.arange(roi[0], roi[2]), roi[3] - roi[1])
cols = np.tile(np.arange(roi[1], roi[3]), roi[2] - roi[0])
else:
rows = np.arange(width)
cols = np.arange(height)
possible_ids = rows * width + cols
return np.random.choice(possible_ids, size=n_conns, replace=False)
def get_local_max_idx(angle, angle_delta, responses, angle_step):
'''Get the index at which the maximum response was found in a range
around an angle.
:param angle: central angle for region of interest
:param angle_delta: range for region of interest (+/- delta)
:param responses: response of a neuron to input at different angle
:param angle_step: angle sampling step for experiments
:return index: at which maximum response was present:
'''
idx = a2i(angle, angle_step)
idx_steps = angle_delta // angle_step
indices = (np.arange(-idx_steps, idx_steps, 1) + idx) % len(responses)
local_resp = responses[indices]
max_idx = indices[np.argmax(local_resp)] % len(responses)
return max_idx
def has_other_max(angle, angle_delta, max_rate, rate_delta, responses, angle_step):
'''Find whether the response list has quantities higher than [max - delta]
and they are outside the preferred response range (pref +/- delta).
:param angle: preferred response angle
:param angle_delta: limits for preferred response range
:param max_rate: maximum rate expected (usually max of responses?)
:param rate_delta: helps establish limit to consider other responses as
"maximum" ( i.e. > (max_rate - rate_delta) )
:param responses: neuron response to input stimulus at different angles
:param angle_step: angle sampling step for experiments
:return bool(are there other max responses):
'''
idx = a2i(angle, angle_step)
max_idx = a2i((angle + angle_delta) % 360, angle_step)
min_idx = a2i((angle - angle_delta) % 360, angle_step)
min_rate = max_rate - rate_delta
if max_idx > min_idx:
indices = np.append(np.arange(min_idx),
np.arange(max_idx, len(responses)))
else:
indices = np.arange(max_idx, min_idx)
whr = np.where(responses[indices] > min_rate)[0]
return len(whr) > 0
# Peter: for my convenience
def get_filtered_dsi_per_neuron(all_average_responses_with_angle, N_layer, dsi_thresh=0.5, harsh=True):
'''
I assume this bit of code does the following:
based on individual neuron activations it computes a Direction Selectivty Index (DSI) or
a ratio of how responsive a neuron is in a direction vs. the opposite of the considered direction.
What we want: neurons which have a response at least twice as good in the considered direction than
the opposite one (this is the thresold level). We are looking to maximise this index => that is the direction
in which the neuron is most sensitive / selective.
:param all_average_responses_with_angle:
:type all_average_responses_with_angle:
:param N_layer:
:type N_layer:
:return:
:rtype:
'''
angle_diff = 5
sigma = 2.0
kernel_width = 7
models = [conv_model(all_average_responses_with_angle[neuron_id, :, 0],
kernel_width, sigma) for neuron_id in range(N_layer)]
max_ang = 360
delta_ang = 50
delta_resp = 5.
min_diff = 10.
min_dsi = dsi_thresh
min_osi = dsi_thresh
selective = []
not_selective = []
# Begin computation
for nid in range(N_layer):
curr_ang = i2a(np.argmax(models[nid]), angle_diff)
opp_ang = get_opp_ang(curr_ang)
# opp_idx = a2i(opp_ang, angle_diff)
opp_idx = get_local_max_idx(opp_ang, delta_ang, models[nid], angle_diff)
opp_ang = i2a(opp_idx, angle_diff)
ang_steps = np.arange(curr_ang - delta_ang, max_ang + delta_ang, delta_ang * 2)
ang_steps = np.append(
np.arange(max(0, curr_ang - 3 * delta_ang), 0, -delta_ang * 2)[::-1], ang_steps)
# ang_steps[:] = np.clip(ang_steps, 0, max_ang)
mean_resp = np.mean(models[nid])
max_resp = np.max(models[nid])
opp_resp = models[nid][opp_idx]
min_resp = np.min(models[nid])
dsi = get_wdsi(models[nid], curr_ang, angle_diff)
osi = get_wosi(models[nid], curr_ang, angle_diff)
other_max = has_other_max(curr_ang, delta_ang, max_resp,
delta_resp, models[nid], angle_diff)
# Assuming the most important metric is the DSI value
if dsi <= min_dsi:
not_selective.append((nid, dsi))
continue
# Additional checks only if we're being harsh
if harsh:
if (max_resp - mean_resp) <= min_diff:
not_selective.append((nid, dsi))
continue
if osi <= min_osi:
not_selective.append((nid, dsi))
continue
if other_max:
not_selective.append((nid, dsi))
continue
selective.append((nid, curr_ang, dsi))
return selective, not_selective