-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextractText2Alchemy.py
executable file
·250 lines (182 loc) · 5.78 KB
/
extractText2Alchemy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
#!/usr/bin/env python
# Copyright 2013 AlchemyAPI
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from alchemyapi import AlchemyAPI
import json
import sys
demo_text = open(sys.argv[1]).read()
#Create the AlchemyAPI Object
alchemyapi = AlchemyAPI()
#Entity Extraction
response = alchemyapi.entities('text',demo_text, { 'sentiment':1 })
fileName = sys.argv[1].replace(".txt",".dat")
f = open(fileName,'w')
if response['status'] == 'OK':
for entity in response['entities']:
f.write('text: '+ entity['text'].encode('utf-8'))
f.write("\n")
f.write('type: '+ entity['type'])
f.write("\n")
f.write('relevance: '+ entity['relevance'])
f.write("\n")
f.write('sentiment: '+ entity['sentiment']['type'])
f.write("\n")
if 'score' in entity['sentiment']:
f.write('sentiment score: ' + entity['sentiment']['score'])
f.write("\n")
f.write('')
f.write("\n")
else:
f.write('Error in entity extraction call: '+ response['statusInfo'])
f.write("\n")
'''
print('')
print('')
print('')
print('############################################')
print('# Keyword Extraction Example #')
print('############################################')
print('')
print('')
print('Processing text: ', demo_text)
print('')
response = alchemyapi.keywords('text',demo_text, { 'sentiment':1 })
if response['status'] == 'OK':
print('## Response Object ##')
print(json.dumps(response, indent=4))
print('')
print('## Keywords ##')
for keyword in response['keywords']:
print('text: ', keyword['text'].encode('utf-8'))
print('relevance: ', keyword['relevance'])
print('sentiment: ', keyword['sentiment']['type'])
if 'score' in keyword['sentiment']:
print('sentiment score: ' + keyword['sentiment']['score'])
print('')
else:
print('Error in keyword extaction call: ', response['statusInfo'])
print('')
print('')
print('')
print('############################################')
print('# Concept Tagging Example #')
print('############################################')
print('')
print('')
print('Processing text: ', demo_text)
print('')
response = alchemyapi.concepts('text',demo_text)
if response['status'] == 'OK':
print('## Object ##')
print(json.dumps(response, indent=4))
print('')
print('## Concepts ##')
for concept in response['concepts']:
print('text: ', concept['text'])
print('relevance: ', concept['relevance'])
print('')
else:
print('Error in concept tagging call: ', response['statusInfo'])
print('')
print('')
print('')
print('############################################')
print('# Targeted Sentiment Analysis Example #')
print('############################################')
print('')
print('')
print('Processing text: ', demo_text)
print('')
response = alchemyapi.sentiment_targeted('text',demo_text, 'Denver')
if response['status'] == 'OK':
print('## Response Object ##')
print(json.dumps(response, indent=4))
print('')
print('## Targeted Sentiment ##')
print('type: ', response['docSentiment']['type'])
if 'score' in response['docSentiment']:
print('score: ', response['docSentiment']['score'])
else:
print('Error in targeted sentiment analysis call: ', response['statusInfo'])
print('')
print('')
print('')
print('############################################')
print('# Language Detection Example #')
print('############################################')
print('')
print('')
print('Processing text: ', demo_text)
print('')
response = alchemyapi.language('text',demo_text)
if response['status'] == 'OK':
print('## Response Object ##')
print(json.dumps(response, indent=4))
print('')
print('## Language ##')
print('language: ', response['language'])
print('iso-639-1: ', response['iso-639-1'])
print('native speakers: ', response['native-speakers'])
print('')
else:
print('Error in language detection call: ', response['statusInfo'])
print('')
print('')
print('')
print('############################################')
print('# Relation Extraction Example #')
print('############################################')
print('')
print('')
print('Processing text: ', demo_text)
print('')
response = alchemyapi.relations('text',demo_text)
if response['status'] == 'OK':
print('## Object ##')
print(json.dumps(response, indent=4))
print('')
print('## Relations ##')
for relation in response['relations']:
if 'subject' in relation:
print('Subject: ', relation['subject']['text'].encode('utf-8'))
if 'action' in relation:
print('Action: ', relation['action']['text'].encode('utf-8'))
if 'object' in relation:
print('Object: ', relation['object']['text'].encode('utf-8'))
print('')
else:
print('Error in relation extaction call: ', response['statusInfo'])
print('')
print('')
print('')
print('############################################')
print('# Text Categorization Example #')
print('############################################')
print('')
print('')
print('Processing text: ', demo_text)
print('')
response = alchemyapi.category('text',demo_text)
if response['status'] == 'OK':
print('## Response Object ##')
print(json.dumps(response, indent=4))
print('')
print('## Category ##')
print('text: ', response['category'])
print('score: ', response['score'])
print('')
else:
print('Error in text categorization call: ', response['statusInfo'])
'''