-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathutils.py
233 lines (187 loc) · 8.54 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from tqdm import tqdm, trange
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import scipy
import time
from sklearn.calibration import calibration_curve
try:
import cPickle as pickle
except Exception as e:
import pickle
# read mnist data
mnist = input_data.read_data_sets('/vol/biomedic/users/np716/data/mnist') # put data path
# here
not_mnist = input_data.read_data_sets(
'/vol/biomedic/users/np716/data/notMNIST_real/notMNIST-to-MNIST-master/') # put data
# path here
swelling_sets = []
for s in np.arange(3, 12):
swelling_sets.append(input_data.read_data_sets(
'/vol/biomedic/users/np716/data/morphomnist/swelling_r{}_s3/'.format(s)))
# helper for rotation
def rotate(img, angle):
img = scipy.ndimage.rotate(img.reshape((28, 28)), angle, reshape=False)
return img.reshape((-1))
# generate set of rotated three's
rot_three_img = np.array(
[rotate(mnist.test.images[270], rot * 10) for rot in range(10)])
rot_pos_three_img = np.array(
[rotate(mnist.test.images[270], rot * -10) for rot in range(10)])
# generate set of rotated one's
rot_one_img = np.array(
[rotate(mnist.test.images[202], rot * 10) for rot in range(10)])
rot_pos_one_img = np.array(
[rotate(mnist.test.images[202], rot * -10) for rot in range(10)])
# generate set of rotated six's
rot_six_img = np.array(
[rotate(mnist.test.images[217], rot * 10) for rot in range(19)])
rot_pos_six_img = np.array(
[rotate(mnist.test.images[217], rot * -10) for rot in range(19)])
# generate mixup
mixup_three_eight_img = np.array([(l / 10.) * mnist.test.images[391]
+ (1 - l / 10.) * mnist.test.images[270]
for l in range(11)])
max_ent = np.sum(-1 * (np.ones(10) / 10.) * np.log((np.ones(10) / 10.)), -1)
def get_pred_df(data, session, ops, mode):
cols = ['prob', 'Prediction', 'sample_idx', 'unit']
df = pd.DataFrame(columns=cols)
probs = get_probs(data, session, ops, mode)
for sample_idx in range(probs.shape[1]): # per data sample
for class_idx in range(10): # per class ...
data = list(zip(
probs[:, sample_idx, class_idx],
[class_idx] * len(probs),
[sample_idx] * len(probs),
list(range(len(probs)))
))
new_df = pd.DataFrame(columns=cols, data=data)
df = pd.concat([df, new_df])
return df
def get_probs(data_inp, session, ops, mode):
if mode == 'ensemble':
probs = np.stack([
session.run(prob, feed_dict={ops['x']: data_inp})
for prob in ops['probs']
])
elif mode == 'map' or mode == 'mle':
probs = session.run(ops['probs'], feed_dict={ops['x']: data_inp})
probs = probs[np.newaxis, :]
else:
probs = np.zeros((100, len(data_inp), 10)) # ensemble, data, classes
batch_size = 1000
for b in range(len(data_inp) // batch_size):
start = b * batch_size
end = start + batch_size
for i in range(100):
probs[i, start:end] += session.run(
ops['probs'], feed_dict={ops['x']: data_inp[start:end]})
end = (len(data_inp) // batch_size) * batch_size
if end < len(data_inp):
start = end
for i in range(100):
probs[i, start:] += session.run(
ops['probs'], feed_dict={ops['x']: data_inp[start:]})
return probs
def build_adv_examples(images, labels, eps, session, ops, mode):
feed_dict = {ops['x']: images, ops['y']: labels, ops['adv_eps']: eps}
if mode == 'ensemble':
adv_data = np.mean(session.run(ops['adv_data'], feed_dict=feed_dict), 0)
elif mode == 'map' or mode == 'mle':
adv_data = session.run(ops['adv_data'], feed_dict=feed_dict)
else:
adv_data = session.run(ops['adv_data'], feed_dict=feed_dict) / 100
for i in range(99):
adv_data += session.run(ops['adv_data'], feed_dict=feed_dict) / 100
return adv_data
def calc_entropy(probs): # shape = [sample, classes]
return np.sum(-1 * probs * np.log(np.maximum(probs, 1e-5)), -1)
def calc_ent_auc(ent):
hist, bin_edges = np.histogram(ent, density=True,
bins=np.arange(0, max_ent, max_ent / 500))
c_hist = np.cumsum(hist * np.diff(bin_edges))
return np.sum(np.diff(bin_edges) * c_hist)
def build_result_dict(session, ops, mode):
result_dict = {}
# calc test acc:
probs = get_probs(mnist.test.images, session, ops, mode)
mean_probs = probs.mean(0)
test_acc = np.mean(np.argmax(mean_probs, -1) == mnist.test.labels)
test_entropy = calc_entropy(mean_probs)
test_ent_auc = calc_ent_auc(test_entropy)
test_cal_pos, test_cal_bins = calibration_curve(
np.ones(len(mean_probs)),
mean_probs[np.arange(len(mean_probs)), mnist.test.labels],
normalize=False, n_bins=50)
result_dict['mean_probs'] = mean_probs
result_dict['test_acc'] = test_acc
result_dict['test_ent_auc'] = test_ent_auc
result_dict['test_entropy'] = test_entropy
result_dict['test_cal_pos'] = test_cal_pos
result_dict['test_cal_bins'] = test_cal_bins
# not mnist entropy
probs = get_probs(not_mnist.test.images, session, ops, mode)
mean_probs = probs.mean(0)
not_mnist_entropy = calc_entropy(mean_probs)
not_mnist_ent_auc = calc_ent_auc(not_mnist_entropy)
result_dict['not_mnist_mean_probs'] = mean_probs
result_dict['not_mnist_entropy'] = not_mnist_entropy
result_dict['not_mnist_ent_auc'] = not_mnist_ent_auc
# build adv examples and test performance
adv_df = pd.DataFrame(columns=['eps', 'acc', 'ent', 'ent_auc'])
result_dict['adv_examples'] = {}
for eps in np.linspace(0., 0.4, num=9):
adv_data = build_adv_examples(mnist.test.images[:100],
mnist.test.labels[:100],
eps, session, ops, mode)
result_dict['adv_examples'][eps] = adv_data
adv_probs = get_probs(adv_data, session, ops, mode)
mean_adv_probs = adv_probs.mean(0)
adv_acc = np.mean(
np.argmax(mean_adv_probs, -1) == mnist.test.labels[:100])
adv_entropy = calc_entropy(mean_adv_probs)
adv_ent_auc = calc_ent_auc(adv_entropy)
adv_df.loc[len(adv_df)] = [eps, adv_acc, adv_entropy.mean(),
adv_ent_auc]
result_dict['adv_df'] = adv_df
swelling_df = pd.DataFrame(columns=['swelling', 'acc', 'ent', 'ent_auc'])
for i, s in enumerate(np.arange(3, 12)):
cur_data = swelling_sets[i]
sw_probs = get_probs(cur_data.test.images, session, ops, mode)
mean_sw_probs = sw_probs.mean(0)
sw_acc = np.mean(
np.argmax(mean_sw_probs, -1) == mnist.test.labels)
sw_entropy = calc_entropy(mean_sw_probs)
sw_ent_auc = calc_ent_auc(sw_entropy)
swelling_df.loc[len(swelling_df)] = [s, sw_acc, sw_entropy.mean(),
sw_ent_auc]
result_dict['swelling_df'] = swelling_df
# run predictions after training
# need:
rot_three_df = get_pred_df(rot_three_img, session, ops, mode)
rot_three_df['Angle'] = rot_three_df['sample_idx'] * 10
result_dict['rot_three_df'] = rot_three_df
rot_pos_three_df = get_pred_df(rot_pos_three_img, session, ops, mode)
rot_pos_three_df['Angle'] = rot_pos_three_df['sample_idx'] * 10
result_dict['rot_pos_three_df'] = rot_pos_three_df
rot_one_df = get_pred_df(rot_one_img, session, ops, mode)
rot_one_df['Angle'] = rot_one_df['sample_idx'] * 10
result_dict['rot_one_df'] = rot_one_df
rot_pos_one_df = get_pred_df(rot_pos_one_img, session, ops, mode)
rot_pos_one_df['Angle'] = rot_pos_one_df['sample_idx'] * 10
result_dict['rot_pos_one_df'] = rot_pos_one_df
rot_six_df = get_pred_df(rot_six_img, session, ops, mode)
rot_six_df['Angle'] = rot_six_df['sample_idx'] * 10
result_dict['rot_six_df'] = rot_six_df
rot_pos_six_df = get_pred_df(rot_pos_six_img, session, ops, mode)
rot_pos_six_df['Angle'] = rot_pos_six_df['sample_idx'] * 10
result_dict['rot_pos_six_df'] = rot_pos_six_df
mixup_three_eight_df = get_pred_df(mixup_three_eight_img, session, ops,
mode)
mixup_three_eight_df['Mixup factor'] = mixup_three_eight_df[
'sample_idx'] / 10.
result_dict['mixup_three_eight_df'] = mixup_three_eight_df
return result_dict