-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.f90
238 lines (192 loc) · 6.82 KB
/
test.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
! Copyright (c) 2023 Paderborn Center for Parallel Computing
!
! Permission is hereby granted, free of charge, to any person obtaining a copy
! of this software and associated documentation files (the "Software"), to deal
! in the Software without restriction, including without limitation the rights
! to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
! copies of the Software, and to permit persons to whom the Software is
! furnished to do so, subject to the following conditions:
!
! The above copyright notice and this permission notice shall be included in
! all copies or substantial portions of the Software.
!
! THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
! IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
! FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
! AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
! LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
! OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
! SOFTWARE.
program test
use accel_lib
use, intrinsic :: iso_fortran_env, only: real64, real32, int32
implicit none
integer, parameter :: dim = 1024
integer(kind=int32) :: err
type(cuda_context) :: ctx, anotherctx
! For testing cuda_dsyevd
real(kind=real64), dimension(3, 3) :: A
real(kind=real64), dimension(3) :: W
! For testing syevd
real(kind=real32), dimension(3, 3) :: Asp
real(kind=real32), dimension(3) :: Wsp
! For testing cuda_dgemm
real(kind=real64), dimension(2, 3) :: X
real(kind=real64), dimension(3, 4) :: Y
real(kind=real64), dimension(2, 4) :: Z
! For testing cuda_sgemm
real(kind=real32), dimension(2, 3) :: Xsp
real(kind=real32), dimension(3, 4) :: Ysp
real(kind=real32), dimension(2, 4) :: Zsp
! For matrix inversion test
real(kind=real64), dimension(:, :), allocatable :: M, Minv, eigvecs, identity
real(kind=real64), dimension(:), allocatable :: eigvals
real(kind=real64) :: error
integer :: i, j
err = load_cuda()
if (err /= 0) then
stop "CUDA acceleration library could not be loaded."
end if
ctx = cuda_init(err)
if (err /= 0) then
stop "Could not initialize GPU acceleration library."
end if
print *
print *, "############################"
print *, "# Eigenvalue Decomposition #"
print *, "############################"
print *
A = reshape((/3.5, 0.5, 0.0, 0.5, 3.5, 0.0, 0.0, 0.0, 2.0/), shape(A))
Asp = REAL(A, kind=real32)
print *, "Input matrix:"
call print_matrix64(A)
print *
call cuda_dsyevd(ctx, 3, A, W, err)
if (err /= 0) then
stop "An error occured in the CUDA accelerated code."
end if
print *, "Eigenvectors (double prec):"
call print_matrix64(A)
print *
print *, "Eigenvalues (double prec):"
print *, W
print *
call cuda_ssyevd(ctx, 3, Asp, Wsp, err)
if (err /= 0) then
stop "An error occured in the CUDA accelerated code."
end if
print *, "Eigenvectors (single prec):"
call print_matrix32(Asp)
print *
print *, "Eigenvalues (single prec):"
print *, Wsp
print *
print *
print *, "#########################"
print *, "# Matrix Multiplication #"
print *, "#########################"
print *
anotherctx = cuda_init(err)
if (err /= 0) then
stop "Could not initialize GPU acceleration library."
end if
X = reshape((/1, 2, 3, 4, 5, 6/), shape(X))
Y = reshape((/1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12/), shape(Y))
Z = reshape((/1, 2, 3, 4, 5, 6, 7, 8/), shape(Z))
Xsp = REAL(X, kind=real32)
Ysp = REAL(Y, kind=real32)
Zsp = REAL(Z, kind=real32)
print *, "Input matrix X:"
call print_matrix64(X)
print *
print *, "Input matrix Y:"
call print_matrix64(Y)
print *
print *, "Input matrix Z:"
call print_matrix64(Z)
print *
call cuda_dgemm(anotherctx, 'N', 'N', 2, 4, 3, 1.5_real64, X, Y, -0.3_real64, Z, err)
if (err /= 0) then
stop "An error occured in the CUDA accelerated code."
end if
print *, "1.5 * X * Y - 0.3 * Z (double prec):"
call print_matrix64(Z)
print *
call cuda_sgemm(anotherctx, 'N', 'N', 2, 4, 3, 1.5, Xsp, Ysp, -0.3, Zsp, err)
if (err /= 0) then
stop "An error occured in the CUDA accelerated code."
end if
print *, "1.5 * X * Y - 0.3 * Z (single prec):"
call print_matrix32(Zsp)
print *
call cuda_finalize(anotherctx, err)
if (err /= 0) then
stop "An error occured in finalize."
end if
print *
print *, "######################################################"
print *, "# Application: Matrix Inverse via Eigendecomposition #"
print *, "######################################################"
print *
allocate (M(dim, dim), Minv(dim, dim), eigvecs(dim, dim), identity(dim, dim), eigvals(dim))
print *, "Generating random symmetric matrix..."
call random_number(M)
M = M + transpose(M)
print *, "Computing eigendecomposition..."
eigvecs = M
call cuda_dsyevd(ctx, dim, eigvecs, eigvals, err)
if (err /= 0) then
stop "An error occured in the CUDA accelerated code."
end if
print *, "Computing inverse based on decomposition..."
do j = 1, dim
do i = 1, dim
Minv(i, j) = 1.0_real64/eigvals(j)*eigvecs(i, j)
end do
end do
call cuda_dgemm(ctx, 'N', 'T', dim, dim, dim, 1.0_real64, Minv, eigvecs, &
0.0_real64, Minv, err)
if (err /= 0) then
stop "An error occured in the CUDA accelerated code."
end if
print *, "Computing identity based on matrix and its inverse..."
call cuda_dgemm(ctx, 'N', 'N', dim, dim, dim, 1.0_real64, M, Minv, &
0.0_real64, identity, err)
if (err /= 0) then
stop "An error occured in the CUDA accelerated code."
end if
error = 0.0_real64
do j = 1, dim
do i = 1, dim
if (i == j) then
error = error + (identity(i, j) - 1)*(identity(i, j) - 1)
else
error = error + identity(i, j)*identity(i, j)
end if
end do
end do
error = sqrt(error)
print *, "Error (Frobenius norm): ", error
deallocate (M, Minv, eigvecs, identity, eigvals)
call cuda_finalize(ctx, err)
if (err /= 0) then
stop "An error occured in finalize."
end if
contains
subroutine print_matrix64(input_matrix)
real(kind=real64), dimension(:, :), intent(in) :: input_matrix
integer :: N(2), i
N = shape(input_matrix)
do i = 1, N(1)
print *, input_matrix(i, :)
end do
end subroutine print_matrix64
subroutine print_matrix32(input_matrix)
real(kind=real32), dimension(:, :), intent(in) :: input_matrix
integer :: N(2), i
N = shape(input_matrix)
do i = 1, N(1)
print *, input_matrix(i, :)
end do
end subroutine print_matrix32
end program test