-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathLazyMap.pm
247 lines (224 loc) · 6.35 KB
/
LazyMap.pm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
package LazyMap;
use 5.010;
# LazyMap.pm
#
# Copyright 2007-2010, Larry Wall
#
# You may copy this software under the terms of the Artistic License,
# version 2.0 or later.
# LazyMap implements backtracking for the Cursor parsing engine. It does this
# in a very similar manner to the List monad in Haskell. Notionally, Cursor
# processes lists of all results, however only the first result is immediately
# calculated; the other results are suspended, and only generated when later
# code needs to refer to them. The standard operation on lazy objects is to
# map a function over them; this function can return other objects, or lazy
# objects which will be lazily flattened in the result.
# A lazy object has the iterator nature, and is destroyed by use. Lazy objects
# support two methods; iter returns the next value (or undef), the bool
# overload returns true if more values are available.
# Lazy values can be associated with transactions. These are used in lieu
# of stack unwinding to implement deep cut operators; when a deep cut is
# performed, values are set on the transaction object, causing further iteration
# (i.e. backtracking) to fail for associated lazies.
use strict;
use warnings;
no warnings 'recursion';
use Exporter;
our @ISA = 'Exporter';
our @EXPORT = qw(lazymap eager);
our $AUTOLOAD;
# Calling an unrecognized method on a lazy delegates to the shifted value, and
# additionally returns the rest...
sub AUTOLOAD {
(my $meth = $AUTOLOAD) =~ s/.*:://;
return if $meth eq 'DESTROY';
print STDERR "AUTOLOAD $meth\n";
my $self = shift;
if (my ($eager) = $self->iter) {
return $eager->$meth(@_), $self;
}
return ();
}
use overload 'bool' => 'true';
# A lazy map represents the lazy result of a concatenating map operation.
# As a microoptimization, we shorten field names for the benefit of strcmp.
#
# B: the function to call to transform each incoming value; it is called in
# list context and it should return multiple values to create a choice
# point. It can also return a lazy list, which is treated as a lazy
# choice point.
# C: The values which were generated by the last block call, if it returned
# >1 (since iter only removes one at a time, but they don't arrive that way)
# L: The values input to the map which have not yet been fed to the block
# N: Number of values so far returned - this is used to ignore cuts if we
# haven't delivered our first value yet (somewhat of a hack).
#
# Values returned by a LazyMap are expected to be cursors, or at least have
# an _xact field that can be checked for cutness.
# Construct a lazymap - block, then a list of inputs (concatenated if lazies)
sub new {
my $class = shift;
my $block = shift;
return bless { 'B' => $block, 'C' => [], 'L' => [@_], 'N' => 0 }, $class;
}
# The fundamental operation on lazies, sometimes spelled concatMap. In list
# context, returns the first value eagerly (this pairing is equivalent to the
# rolled lazymap in lazycat context).
sub lazymap (&@) {
my $block = shift;
return () unless @_;
my $lazy = bless { 'B' => $block, 'C' => [], 'L' => [@_], 'N' => 0 }, 'LazyMap';
if (wantarray) {
if (my @retval = iter($lazy)) {
push @retval, $lazy if @{$lazy->{C}} || @{$lazy->{L}};
return @retval;
}
return;
}
else {
$lazy;
}
}
# Destructively extract the next value from a lazy, or undef.
sub iter {
my $self = shift;
my $lazies = $self->{L};
my $called = $self->{C};
while (@$called or @$lazies) {
# pull from lazy list only when forced to
while (not @$called) {
return () unless @$lazies;
my $lazy = $$lazies[0];
# recursive lazies? delegate to lower ->iter
if (ref($lazy) =~ /^Lazy/) {
my $todo = $lazy->iter;
if (defined $todo) {
@$called = $self->{B}->($todo);
}
else {
shift @$lazies;
}
}
elsif (defined $lazy) { # just call our own block
@$called = $self->{B}->(shift @$lazies);
}
else { # undef snuck into the list somehow
shift @$lazies;
}
}
# evaluating the blocks may have returned something lazy, so delegate again
while (@$called and ref($$called[0]) =~ /^Lazy/) {
my $really = $$called[0]->iter;
if ($really) {
unshift @$called, $really;
}
else {
shift @$called;
}
}
# finally have at least one real cursor, grep for first with live transaction
while (@$called and ref($$called[0]) !~ /^Lazy/) {
my $candidate = shift @$called;
# make sure its transaction doesn't have a prior commitment
my $xact = $candidate->{_xact};
my $n = $self->{N}++;
return $candidate unless $xact->[-2] and $n;
}
}
return ();
}
sub true {
my $self = shift();
my $called = $self->{C};
return 1 if @$called;
my $lazies = $self->{L};
return 0 unless @$lazies;
return 0 unless my ($c) = $self->iter;
unshift(@$called, $c);
return 1;
}
# Destructively convert a lazies into a list; equivalently, places lazycat
# context on the interior. Only useful in list context
sub eager {
my @out;
while (@_) {
my $head = shift;
if (ref($head) eq 'LazyMap') { # don't unroll LazyConst
while (my ($next) = $head->iter) {
push @out, $next;
}
}
else {
push @out, $head;
}
}
# print STDERR ::Dump(@out);
@out;
}
# LazyConst produces an infinite list, which stubbornly tries the same value
# over and over
{ package LazyConst;
sub new {
my $self = shift;
my $xact = shift;
bless { 'K' => shift, 'X' => $xact }, 'LazyConst';
}
sub true {
1;
}
sub iter {
return () if $_[0]->{X}->[-2];
$_[0]->{K};
}
}
# LazyRange lazily produces each value in a sequence - useful for quantifiers
{ package LazyRange;
sub new {
my $class = shift;
my $xact = shift;
my $start = shift;
my $end = shift;
bless { 'N' => $start, 'E' => $end, 'X' => $xact }, $class;
}
sub true {
1;
}
sub iter {
my $self = shift;
if ($self->{X}->[-2]) {
()
}
elsif ((my $n = $self->{N}++) <= $self->{E}) {
$n;
}
else {
();
}
}
}
# Like above, but reverse
{ package LazyRangeRev;
sub new {
my $class = shift;
my $xact = shift;
my $start = shift;
my $end = shift;
bless { 'N' => $start, 'E' => $end, 'X' => $xact }, $class;
}
sub true {
1;
}
sub iter {
my $self = shift;
if ($self->{X}->[-2]) {
()
}
elsif ((my $n = $self->{N}--) >= $self->{E}) {
$n;
}
else {
();
}
}
}
1;