forked from PickNikRobotics/pick_ik
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpick_ik_parameters.yaml
198 lines (198 loc) · 5.6 KB
/
pick_ik_parameters.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
pick_ik:
# Overall solver settings
mode: {
type: string,
default_value: "global",
description: "IK solver mode. Set to global to allow the initial guess to be a long distance from the goal, or local if the initial guess is near the goal.",
validation: {
one_of<>: [["global", "local"]]
}
}
gd_step_size: {
type: double,
default_value: 0.0001,
description: "Gradient descent step size for joint perturbation",
validation: {
gt_eq<>: [1.0e-12],
}
}
gd_max_iters: {
type: int,
default_value: 100,
description: "Maximum iterations for local gradient descent",
validation: {
gt_eq<>: [1],
}
}
gd_min_cost_delta: {
type: double,
default_value: 1.0e-12,
description: "Minimum change in cost function value for gradient descent",
validation: {
gt_eq<>: [1.0e-64],
}
}
# Cost functions and thresholds
position_threshold: {
type: double,
default_value: 0.001,
description: "Position threshold for solving IK, in meters",
validation: {
gt_eq<>: [0.0],
},
}
orientation_threshold: {
type: double,
default_value: 0.001,
description: "Orientation threshold for solving IK, in radians",
validation: {
gt_eq<>: [0.0],
},
}
approximate_solution_position_threshold: {
type: double,
default_value: 0.05,
description: "Position threshold for approximate IK solutions, in meters. If displacement is larger than this, the approximate solution will fall back to the initial guess",
validation: {
gt_eq<>: [0.0],
},
}
approximate_solution_orientation_threshold: {
type: double,
default_value: 0.05,
description: "Orientation threshold for approximate IK solutions, in radians. If displacement is larger than this, the approximate solution will fall back to the initial guess",
validation: {
gt_eq<>: [0.0],
},
}
approximate_solution_joint_threshold: {
type: double,
default_value: 0.0,
description: "Joint threshold for approximate IK solutions, in radians. If displacement is larger than this, the approximate solution will fall back to the initial guess",
validation: {
gt_eq<>: [0.0],
},
}
approximate_solution_cost_threshold: {
type: double,
default_value: 0.0,
description: "Cost threshold for approximate IK solutions. If the result of the cost function is larger than this, the approximate solution will fall back to the initial guess.",
validation: {
gt_eq<>: [0.0],
},
}
cost_threshold: {
type: double,
default_value: 0.001,
description: "Scalar value for comparing to result of cost functions. IK is considered solved when all position/rotation/twist thresholds are satisfied and all cost functions return a value lower than this value.",
validation: {
gt_eq<>: [0.0],
},
}
position_scale: {
type: double,
default_value: 1.0,
description: "The position scale for the pose cost function. Set to 0.0 to solve for only rotation or other goals",
validation: {
gt_eq<>: [0.0],
},
}
rotation_scale: {
type: double,
default_value: 0.5,
description: "The rotation scale for the pose cost function. Set to 0.0 to solve for only position",
validation: {
gt_eq<>: [0.0],
},
}
center_joints_weight: {
type: double,
default_value: 0.0,
description: "Weight for centering cost function, >0.0 enables const function",
validation: {
gt_eq<>: [0.0],
},
}
avoid_joint_limits_weight: {
type: double,
default_value: 0.0,
description: "Weight for avoiding joint limits cost function, >0.0 enables const function",
validation: {
gt_eq<>: [0.0],
},
}
minimal_displacement_weight: {
type: double,
default_value: 0.0,
description: "Weight for minimal displacement cost function, >0.0 enables const function",
validation: {
gt_eq<>: [0.0],
},
}
stop_optimization_on_valid_solution : {
type: bool,
default_value: true,
description: "If false, keeps running after finding a solution to further optimize the solution until a time or iteration limit is reached",
}
# Memetic IK specific parameters
memetic_num_threads: {
type: int,
default_value: 1,
description: "Number of threads for memetic IK",
validation: {
gt_eq<>: [1],
}
}
memetic_stop_on_first_solution: {
type: bool,
default_value: true,
description: "If true, stops on first solution and terminates other threads",
}
memetic_population_size: {
type: int,
default_value: 16,
description: "Population size for memetic IK",
validation: {
gt_eq<>: [1],
}
}
memetic_elite_size: {
type: int,
default_value: 4,
description: "Number of elite members of memetic IK population",
validation: {
gt_eq<>: [1],
}
}
memetic_wipeout_fitness_tol: {
type: double,
default_value: 0.00001,
description: "Minimum fitness must improve by this value or population will be wiped out",
validation: {
gt_eq<>: [0.0],
}
}
memetic_max_generations: {
type: int,
default_value: 100,
description: "Maximum iterations of evolutionary algorithm",
validation: {
gt_eq<>: [1],
}
}
memetic_gd_max_iters: {
type: int,
default_value: 25,
description: "Maximum iterations of gradient descent during memetic exploitation",
validation: {
gt_eq<>: [1],
}
}
memetic_gd_max_time: {
type: double,
default_value: 0.005,
description: "Maximum time spent on gradient descent during memetic exploitation",
validation: {
gt_eq<>: [0.0],
}
}