-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgating_train.py
152 lines (132 loc) · 5.85 KB
/
gating_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import argparse
import pickle as pkl
import numpy as np
from sklearn.linear_model import LogisticRegression
parser = argparse.ArgumentParser(description='View adaptive')
parser.add_argument('--ss', type=int, required=True, help="split size")
parser.add_argument('--st', type=str, required=True, help="split type")
parser.add_argument('--dataset_path', type=str,
required=True, help="dataset path")
parser.add_argument('--dataset', type=str, required=True, help="dataset name")
parser.add_argument('--wdir', type=str, required=True,
help="directory to save weights path")
parser.add_argument('--le', type=str, required=True,
help="language embedding model")
parser.add_argument('--ve', type=str, required=True,
help="visual embedding model")
parser.add_argument('--phase', type=str, required=True, help="train or val")
parser.add_argument('--num_classes', type=int, required=True,
help="number of classes")
parser.add_argument('--tm', type=str, required=True, help='text mode')
parser.add_argument('--th', type=int,
required=True, help='threshold')
parser.add_argument('--t', type=int, required=True, help='temp')
args = parser.parse_args()
num_unseen_classes = args.ss
st = args.st
dataset = args.dataset
dataset_path = args.dataset_path
wdir = args.wdir
le = args.le
ve = args.ve
phase = args.phase
num_classes = args.num_classes
tm = args.tm
th_set = args.th
t_set = args.t
seed = 5
np.random.seed(seed)
def temp_scale(seen_features, T): # softmax
return np.array([np.exp(i)/np.sum(np.exp(i)) for i in (seen_features + 1e-12)/T])
# unseen cls output of "ztest.npy", which is the features of the unseen validation set from training set heldout
unseen_zs = np.load(
f'{wdir}/{le}/{tm}/MSF_{num_unseen_classes}_r_unseen_zs.npy')
# unseen cls output of "val.npy", which is the features of the seen validation set from training set heldout
seen_zs = np.load(f'{wdir}/{le}/{tm}/MSF_{num_unseen_classes}_r_seen_zs.npy')
# seen cls output of "ztest.npy"
unseen_train = np.load(f'{dataset_path}/ztest_out.npy')
# seen cls output of "val.npy"
seen_train = np.load(f'{dataset_path}/val_out.npy')
seen_random_idx = np.random.choice(
np.arange(seen_train.shape[0]),
min(unseen_train.shape[0], seen_train.shape[0]),
replace=False
)
seen_train = seen_train[seen_random_idx]
seen_zs = seen_zs[seen_random_idx]
best_model = None
best_acc = 0
best_thresh = 0
t_iter = [i for i in range(1, 10)] if t_set == 0 else [t_set]
for t in t_iter:
fin_val_acc = 0
fin_train_acc = 0
prob_unseen_zs = unseen_zs
prob_unseen_train = temp_scale(unseen_train, t)
prob_seen_zs = seen_zs
prob_seen_train = temp_scale(seen_train, t)
feat_unseen_zs = -np.sort(-prob_unseen_zs, 1)[:, :num_unseen_classes]
feat_unseen_train = -np.sort(-prob_unseen_train, 1)[:, :num_unseen_classes]
feat_seen_zs = -np.sort(-prob_seen_zs, 1)[:, :num_unseen_classes]
feat_seen_train = -np.sort(-prob_seen_train, 1)[:, :num_unseen_classes]
val_unseen_inds = np.random.choice(np.arange(
feat_unseen_train.shape[0]), min(300, feat_unseen_train.shape[0] // 6), replace=False)
val_seen_inds = np.random.choice(np.arange(
feat_seen_train.shape[0]), min(300, feat_seen_train.shape[0] // 6), replace=False)
train_unseen_inds = np.setdiff1d(
np.arange(feat_unseen_train.shape[0]), val_unseen_inds)
train_seen_inds = np.setdiff1d(
np.arange(feat_seen_train.shape[0]), val_seen_inds)
gating_train_x = np.concatenate([
np.concatenate([
feat_unseen_zs[train_unseen_inds],
feat_unseen_train[train_unseen_inds]], axis=1),
np.concatenate([
feat_seen_zs[train_seen_inds],
feat_seen_train[train_seen_inds]], axis=1),], axis=0)
gating_train_y = np.array(
[0]*len(train_unseen_inds) + [1]*len(train_seen_inds))
gating_val_x = np.concatenate([
np.concatenate([
feat_unseen_zs[val_unseen_inds],
feat_unseen_train[val_unseen_inds]], 1),
np.concatenate([
feat_seen_zs[val_seen_inds],
feat_seen_train[val_seen_inds]], 1)], 0)
gating_val_y = np.array([0]*len(val_unseen_inds) + [1]*len(val_seen_inds))
train_inds = np.arange(gating_train_x.shape[0])
np.random.shuffle(train_inds)
model = LogisticRegression(random_state=0, C=1, solver='lbfgs', n_jobs=2,
multi_class='multinomial', verbose=0, max_iter=50000,
).fit(gating_train_x[train_inds], gating_train_y[train_inds])
prob = model.predict_proba(gating_val_x)
best = 0
bestT = 0
th_iter = [i for i in range(25, 75, 1)] if th_set == 0 else [
th_set] # (25, 75) -> (45, 55)
for th in th_iter:
y = prob[:, 0] > th/100
acc = np.sum((1 - y) == gating_val_y)/len(gating_val_y)
if acc > best:
best = acc
bestT = th/100
fin_val_acc += best
pred_train = model.predict(gating_train_x)
train_acc = np.sum(pred_train == gating_train_y)/len(gating_train_y)
fin_train_acc += train_acc
print('gating_train_x', gating_train_x.shape, 'gating_train_y',
gating_train_y.shape, 'gating_val_x', gating_val_x.shape, 'gating_val_y', gating_val_y.shape)
# print first sample with y = 0 and y= 1 respectively
print(gating_train_x[0], gating_train_y[0])
print(gating_train_x[-1], gating_train_y[-1])
if fin_val_acc > best_acc:
best_temp = t
best_acc = fin_val_acc
best_thresh = bestT
best_model = model
print('best validation accuracy for the gating model', best_acc)
print('best threshold', best_thresh)
print('best temperature', best_temp)
with open(wdir.replace('_val', '') + f'/{le}/{tm}/gating_model.pkl', 'wb') as num_unseen_classes:
pkl.dump(best_model, num_unseen_classes)
num_unseen_classes.close()