-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
131 lines (95 loc) · 3.33 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import torch
import torch.nn as nn
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Linear') != -1:
m.bias.data.fill_(0)
nn.init.xavier_uniform_(m.weight, gain=0.5)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
class Encoder(nn.Module):
def __init__(self, layer_sizes, style_latent_size=0):
super(Encoder, self).__init__()
layers = []
for i in range(len(layer_sizes)-2):
layers.append(nn.Linear(layer_sizes[i], layer_sizes[i+1]))
layers.append(nn.Dropout1d())
layers.append(nn.ReLU())
self.style_latent_size = style_latent_size
self.model = nn.Sequential(*layers)
self.mu = nn.Sequential(
nn.Linear(layer_sizes[-2], layer_sizes[-1])
)
self.logvar = nn.Sequential(
nn.Linear(layer_sizes[-2], layer_sizes[-1])
)
self.apply(weights_init)
def forward(self, x, instance_style=False):
h = self.model(x)
mu = self.mu(h)
logvar = self.logvar(h)
if self.style_latent_size == 0:
return mu, logvar
if not instance_style:
return (
mu[:, :-self.style_latent_size],
logvar[:, :-self.style_latent_size]
)
else:
return (
mu[:, :-self.style_latent_size],
logvar[:, :-self.style_latent_size],
mu[:, -self.style_latent_size:],
logvar[:, -self.style_latent_size:]
)
class Decoder(nn.Module):
def __init__(self, layer_sizes):
super(Decoder, self).__init__()
layers = []
for i in range(len(layer_sizes)-1):
layers.append(nn.Linear(layer_sizes[i], layer_sizes[i+1]))
layers.append(nn.ReLU())
self.model = nn.Sequential(*layers)
self.apply(weights_init)
def forward(self, x):
out = self.model(x)
return out
class MLP(nn.Module):
def __init__(self, layer_sizes):
super(MLP, self).__init__()
layers = []
for i in range(len(layer_sizes)-1):
layers.append(nn.Linear(layer_sizes[i], layer_sizes[i+1]))
layers.append(nn.ReLU())
self.model = nn.Sequential(*layers)
self.apply(weights_init)
def forward(self, x):
return self.model(x)
class Discriminator(nn.Module):
def __init__(self, input_size) -> None:
super().__init__()
self.net = nn.Sequential(
nn.Linear(input_size, input_size//4),
nn.ReLU(inplace=True),
nn.Linear(input_size//4, 1),
nn.Sigmoid()
)
self.apply(weights_init)
def forward(self, x):
return self.net(x)
def reparameterize(mu, logvar):
sigma = torch.exp(0.5*logvar)
eps = torch.FloatTensor(sigma.size()[0], 1).normal_(
0, 1).expand(sigma.size()).to(mu.device)
return eps*sigma + mu
def KL_divergence(mu, logvar):
return 0.5*(torch.sum(- (mu**2) + 1 + logvar - torch.exp(logvar)))/mu.shape[0]
def permute_dims(zs, zis):
B = zs.size(0)
device = zs.device
perm1 = torch.randperm(B, device=device)
perm2 = torch.randperm(B, device=device)
perm_zs = zs[perm1]
perm_zis = zis[perm2]
return perm_zs, perm_zis