-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathNN2ST.py
executable file
·331 lines (251 loc) · 11.5 KB
/
NN2ST.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
#-----------------------------------------------------------------------------#
#
# Two-Sample Test with Nearest-Neighbors Density Ratio Estimation
#
# MIT License
# Copyright (c) 2018: Andrea De Simone, Thomas Jacques
#
#-----------------------------------------------------------------------------#
from __future__ import print_function
from __future__ import division
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
from random import randint
from scipy import stats
from sklearn.utils import shuffle
from sklearn.neighbors import NearestNeighbors
#-----------------------------------------------------------------------------#
# Nearest Neighbors class
class NearestNeighborsClass(object):
"""
Nearest neighbor density ratio estimator.
Used to compute the Test Statistic.
"""
def __init__(self, n_neighbors=2):
"""
Initialize the class instance.
n_neighbors: number of nearest neighbors (must be >= 1)
"""
self.n_neighbors = n_neighbors
def fit(self, x_benchmark, x_trial):
"""
Build kd-trees for both samples.
x_benchmark: benchmark (control) sample
x_trial: trial (test) sample
"""
# build kd-trees for both samples
self.nbrs_benchmark = NearestNeighbors(n_neighbors=self.n_neighbors,
algorithm='kd_tree').fit(x_benchmark)
self.nbrs_trial = NearestNeighbors(n_neighbors=self.n_neighbors+1,
algorithm='kd_tree').fit(x_trial)
def compute_distances(self, x_q):
"""
Compute distances of Kth-NN in B and T from query points x_q.
x_q: sample of query data points at which we evaluate the density ratio.
Return: array of distances of Kth-NN in Benchmark and Trial,
and array of coordinates (X_q) for each data point in the query sample.
"""
# get distances of nearest neighbors in Benchmark from Query points
distances_B, _ = self.nbrs_benchmark.kneighbors(x_q)
radii_B = distances_B[:,-1] # distances of Kth-NN
# get distances of nearest neighbors in Trial from Query points
distances_T, _ = self.nbrs_trial.kneighbors(x_q)
radii_T = distances_T[:,-1] # distances of Kth-NN
coords = x_q
return(radii_B, radii_T, coords)
#*****************************************************************************#
#-----------------------------------------------------------------------------#
# Hypothesis Test class
class HypothesisTest(object):
"""
Class to perform hypothesis testing (two-sample test) with
Nearest Neighbors Density Ratio Estimation of pdfs.
"""
def __init__(self, x_benchmark, x_trial, K=5, n_perm=100):
"""
Initialize the class instance.
"""
self.x_benchmark = x_benchmark
self.x_trial = x_trial
self.K = K
self.n_perm = n_perm
# Number of points in the samples
self.NB = self.x_benchmark.shape[0]
self.NT = self.x_trial.shape[0]
# Dimensionality of points
self.D = self.x_benchmark.shape[1]
def TestStatistic(self, x_b, x_t):
"""
Compute the test statistic using nearest neighbor
density ratio estimator.
"""
# Instantiate NearestNeighbors class
NN = NearestNeighborsClass(n_neighbors = self.K)
# Build kd-trees with fixed K
NN.fit(x_b, x_t)
# Compute distances r_{j,B}, r_{j,T} of Kth-NN in B and T,
# from x_j in Trial
self.r_B, self.r_T, _ = NN.compute_distances(x_t)
# Compute estimated density ratio on Trial points
r_hat = np.power(np.divide(self.r_B, self.r_T), self.D) * (self.NB/float(self.NT-1)) + np.finfo(float).eps
# Compute test statistic over Trial points
TS = np.mean( np.log(r_hat) )
return(TS)
def PermutationTest(self):
"""
Permutation Test to reconstruct the distribution of the test statistic.
Called in 'compute_pvalue' method.
It stores in 'self.TS_tilde' the set of TS computed at each permutation.
"""
# U = union of B and T
union_sample = np.concatenate((self.x_benchmark, self.x_trial), axis=0)
n_samples = self.NB + self.NT
# Initialize array of test statistic values
self.TS_tilde = np.zeros(self.n_perm, dtype=np.float)
count=0
print("Running {:d} Permutations... 0%".format(self.n_perm))
# loop over different samplings
for i in range(self.n_perm):
# Print progress
progress = int(round(((i+1)/self.n_perm)*100,0))
progress_list = [25, 50, 75, 100]
if count < len(progress_list) and progress == progress_list[count]:
count+=1
print("Running {:d} Permutations... {:d}%".format(self.n_perm, progress))
# Random permutations of U (sampling without replacement)
x_resampled = shuffle(union_sample)
# Assign first NB elements to Benchmark
B_resampled = x_resampled[:self.NB]
# Assign remaning NT elements to Trial
T_resampled = x_resampled[self.NB:]
# Compute the test statistic
self.TS_tilde[i] = self.TestStatistic(B_resampled, T_resampled)
def compute_pvalue(self):
"""
Perform permutation test and compute the (two-sided) p-value
of the observed value of the test statistic.
If p-value from permutations is 0, compute the p-value
from gaussian fit to distribution (pvalue_gaussian).
"""
# Run permutation test
self.PermutationTest()
# TS obtained from the original B,T samples
self.TS_obs = self.TestStatistic(self.x_benchmark, self.x_trial)
# Mean and std of the TS distribution
self.mu = np.mean(self.TS_tilde)
self.sigma = np.std(self.TS_tilde)
# Standardized test statistic (zero mean, unit variance)
self.TS_prime = (self.TS_tilde - self.mu)/self.sigma
self.TS_prime_obs = (self.TS_obs - self.mu)/self.sigma
# Two-sided p-value from TS' distribution
self.p_value = 2*(1 - 0.01 * stats.percentileofscore(self.TS_prime,
abs(self.TS_prime_obs)) )
# if 0, compute it from standard normal
if self.p_value == 0.0:
self.p_value = self.pvalue_gaussian()
print("")
print("p-value = {:e}".format(self.p_value))
def pvalue_gaussian(self):
"""
Two-sided p-value from stanard normal distribution (zero-mean unit-variance)
of the standardized TS disitribution from permutations.
The 'compute_pvalue' method needs to be evaluated first.
"""
pv = 2 * stats.norm.sf(abs(self.TS_prime_obs), loc=0, scale=1)
return(pv)
def pvalue_test(self, alpha=0.01):
"""
Compare p-value with alpha.
The 'compute_pvalue' method needs to be evaluated first.
"""
CL = int((1-alpha)*100) # confidence level
if self.p_value < alpha:
print("Null hypothesis rejected at {:d}%CL => distributions are different".format(CL))
else:
print("Null hypothesis NOT rejected => distributions are the same")
def significance(self):
"""
Convert two-sided p-value to equivalent significance Z
of a standard normal distribution: Z=InverseCDF(1-p/2),
or equivalently Z=-InvserCDF(p/2).
The 'compute_pvalue' method needs to be evaluated first.
"""
Z = -1*stats.norm.ppf(0.5*self.p_value)
print("Z = {:e} sigma".format(Z))
#*****************************************************************************#
#-----------------------------------------------------------------------------#
# Gaussian Data class
class GaussianData(object):
"""
Class to generate 2-dimensional Benchmark and Trial
samples from gaussian distributions
"""
def __init__(self, mean_b, cov_b, mean_t, cov_t, n_points=1000):
"""
Initialize the class instance.
Input: mean vectors and covariance matrices for B and T samples.
n_points: number of sample points to generate.
"""
self.mean_b = mean_b
self.cov_b = cov_b
self.mean_t = mean_t
self.cov_t = cov_t
self.n_points = n_points
def generate_data(self):
"""
Generate toy data from two-dim Gaussian distributions
"""
np.random.seed(0)
L_b = np.linalg.cholesky(self.cov_b)
L_t = np.linalg.cholesky(self.cov_t)
self.x_benchmark = np.dot(L_b,(np.random.randn(self.n_points,2) + self.mean_b).T).T
self.x_trial = np.dot(L_t,(np.random.randn(self.n_points,2) + self.mean_t).T).T
def scatter_plot(self):
"""
Generate plots of benchmark/trial samples in 2D feature space
"""
sns.set_style('whitegrid')
fig, ax = plt.subplots()
cmap = sns.cubehelix_palette(8, start=.5, rot=-.75, as_cmap=True)
plt.title('Benchmark and Trial Samples', fontsize=16)
ax.xaxis.set_tick_params(labelsize=16, direction='inout', length=6, width=1, color='gray')
ax.yaxis.set_tick_params(labelsize=16, direction='inout', length=6, width=1, color='gray')
ax.scatter(self.x_benchmark[:,0], self.x_benchmark[:,1], c='magenta',
alpha=0.5, marker='x',label='B sample')
ax.scatter(self.x_trial[:,0],self.x_trial[:,1], c='blue',
alpha=0.2, marker='s',label='T sample')
plt.grid(True)
plt.legend(loc='upper left', fontsize=14)
plt.show()
#*****************************************************************************#
#-----------------------------------------------------------------------------#
def main():
# Generate gaussian random samples
# Benchmark sample
mean_b = np.array([1.0,1.0])
cov_b = np.array([[1,0.],[0.,1]])
# Trial sample
mean_t = np.array([1.15,1.15])
cov_t = np.array([[1.0,0.0],[0.0,1.0]])
gdata = GaussianData(mean_b, cov_b, mean_t, cov_t, n_points=2000)
gdata.generate_data()
#gdata.scatter_plot()
X_benchmark = gdata.x_benchmark
X_trial = gdata.x_trial
print("Benchmark sample: {:d} points".format(X_benchmark.shape[0]))
print("Trial sample: {:d} points\n".format(X_trial.shape[0]))
# Compute Test Statistic and p-value
K=2
Nperm=100
HT = HypothesisTest(X_benchmark, X_trial, K=K, n_perm=Nperm)
print("TS_obs (K={:d}) = {:.5f}\n".format(K, HT.TestStatistic(X_benchmark, X_trial)) )
HT.compute_pvalue()
HT.significance()
HT.pvalue_test(alpha=0.05)
#*****************************************************************************#
#-----------------------------------------------------------------------------#
if __name__ == '__main__':
main()
print("")
#*****************************************************************************#