-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathTWoLife.R
173 lines (165 loc) · 5.61 KB
/
TWoLife.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Função "wrapper" para a chamada em C:
#
# Os passos abaixo foram adaptados de http://users.stat.umn.edu/~geyer/rc/
Sys.setenv("PKG_CPPFLAGS" = "-fopenmp -DPARALLEL") # liga biblioteca de paralelismo
system("rm TWoLife.so") #limpa sources velhos
system("rm TWoLife.o") #limpa sources velhos
system ("R CMD SHLIB TWoLife.cpp") ## compila no R
dyn.load("TWoLife.so") ## carrega os source resultantes como biblioteca dinamica no R
# Generates the landscape with specified conditions.
# numb.cells represents both the lenght AND width of the landscape, so numb.cells=100 creates a 100x100 landscape
# Land.shape can be 0 = XXX or 1 = XXX.
# Bound.condition can be 0 = XXX or 1 = XXX.
Landscape <- function (numb.cells = 100, cell.size = 1, land.shape = 1, type=c("random","blob"), bound.condition=0, cover=1) {
type=match.arg(type)
if(cover < 0 || cover > 1) {
stop("Error creating landscape. Cover must be between 0 and 1")
}
# scape represents the actual landscape
scape <- rep(1, numb.cells*numb.cells)
if(cover < 1) {
NtoRemove=round((1-cover)*numb.cells*numb.cells);
if(type=="random") {
while(NtoRemove>0)
{
i=round(runif(1,0,numb.cells-1));
j=round(runif(1,0,numb.cells-1));
# tests to see if this point has already been removed
if(scape[1+numb.cells*j+i] == 1) {
NtoRemove = NtoRemove - 1
scape[1+numb.cells*j+i] = 0
}
}
}
if(type=="blob") {
i=round(runif(1,0,numb.cells-1));
j=round(runif(1,0,numb.cells-1));
while(NtoRemove>0)
{
# tests to see if this point has already been removed
if(scape[1+numb.cells*j+i] == 1) {
NtoRemove = NtoRemove - 1
scape[1+numb.cells*j+i] = 0
}
# Draft a new point to be removed (random walk!)
if(sample(1:2,1) == 1) {
i = i + (-1)**sample(1:2,1)
} else {
j = j + (-1)**sample(1:2,1)
}
if(i == -1) { i=numb.cells-1}
if(i == numb.cells) { i=1}
if(j == -1) { j=numb.cells-1}
if(j == numb.cells) { j=1}
}
}
}
land <- list(numb.cells = numb.cells, cell.size=cell.size, land.shape=land.shape, type=type, bound.condition=bound.condition, cover=cover, scape=scape)
class(land) <- "landscape"
return(land)
}
TWoLife <- function (
raio=0.1,
N=80,
AngVis=360,
passo=5,
move=0.5,
taxa.basal=0.6,
taxa.morte=0.1,
incl.birth=0.5/0.01,
incl.death=0,
density.type=0,
death.mat=7,
landscape,
tempo=20,
ini.config=0,
out.code=1)
{
if(class(landscape) != "landscape") {
stop("Error in function TWoLife: you must provide a valid landscape. See ?Landscape")
}
if(raio>landscape$numb.cells*landscape$cell.size/2)
{stop("Error in function TWoLife: the radius must be lower than or equal to the half of landscape side (radius <= numb.cells*cell.size/2)")}
saida.C <- .C("TWoLife",
as.double(raio),# 1
as.integer(N),# 2
as.double(AngVis),# 3
as.double(passo),# 4
as.double(move),# 5
as.double(taxa.basal),# 6
as.double(taxa.morte),# 7
as.double(incl.birth),# 8
as.double(incl.death),# 9
as.integer(landscape$numb.cells),# 10
as.double(landscape$cell.size),# 11
as.integer(landscape$land.shape),# 12
as.integer(density.type),# 13
as.double(death.mat), # 14
as.integer(ini.config), #15
as.integer(landscape$bound.condition), #16
as.integer(landscape$scape), #17
as.double(tempo), #18
as.integer(0), # 19
as.double(rep(0, 5000)), # 20
as.double(rep(0,5000)), # 21
as.integer(out.code)
## verificar se precisa definir o tamanho e se isto nao dará problemas (dois ultimos argumentos)
)
n <- saida.C[[19]]
x <- saida.C[[20]]
y <- saida.C[[21]]
x <- x[1:n]; y <- y[1:n]
return(data.frame(x=x,y=y))
}
# ## Um teste rapido
# land <- Landscape(cover=1,type="b",cell.size=100)
# # ## Uma rodada: coordenadas dos sobreviventes apos t=20
# teste <- TWoLife(raio=1560,
# N=10,
# AngVis=360,
# passo=10,
# move=0,
# taxa.basal=0.2,
# taxa.morte=0,
# incl.birth=1529.076,
# incl.death=0,
# density.type=1,
# death.mat=1,
# landscape=land,
# tempo=30,
# ini.config=1,
# out.code=234)
# TWoPlot <- function(pop, land, col1="gray20", col2="gray70") {
# n = land$numb.cells
# s <- seq(-n*land$cell.size/2, n*land$cell.size/2, length=n) # creates the x- and y- sequences for image
# if (sum(land$scape) == n*n) {
# color = col1
# } else {
# color = c(col2, col1)
# }
# image(s, s, matrix(land$scape,ncol=n), col=color)
# points(pop, pch=4, col=2)
# }
# TWoPlot(teste, land)
#plot(teste1, xlim=c(-100,100), ylim=c(-100,100))
#dim(teste1)
## Tamanho de populacao apos t=6 de 100 repeticoes
#pop.size<- numeric()
#for (i in 1:20)
# {
# pop.size[i] =
# nrow(
# TWoLife(raio=0.1, N=80, AngVis=360, passo=5, move=0.1, taxa.basal=0.6,
# taxa.morte=0.1,
# incl.birth=0.5/0.01, incl.death=0, numb.cells=200, cell.size=1, land.shape=1,
# density.type=0, death.mat=7,bound.condition=0, cover=1, tempo=6))
# }
## esperado: capacidade de suporte
# Support <- function(taxa.basal=0.6, taxa.morte=0.1, incl.birth=0.5/0.01,
# incl.death=0, numb.cells=200, cell.size=2) {
# densi.max = (taxa.basal-taxa.morte)/(incl.birth+incl.death)
# return ((numb.cells*cell.size)^2 * densi.max)
# }
## Media das simulacoes
#print(pop.size - Support())
#print(mean(pop.size - Support()))