-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathFsub_LetSum_Infrastructure.v
724 lines (621 loc) · 22.6 KB
/
Fsub_LetSum_Infrastructure.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
(** Infrastructure lemmas and tactic definitions for Fsub.
Authors: Brian Aydemir and Arthur Chargu\'eraud, with help from
Aaron Bohannon, Jeffrey Vaughan, and Dimitrios Vytiniotis.
This file contains a number of definitions, tactics, and lemmas
that are based only on the syntax of the language at hand. While
the exact statements of everything here would change for a
different language, the general structure of this file (i.e., the
sequence of definitions, tactics, and lemmas) would remain the
same.
Table of contents:
- #<a href="##fv">Free variables</a>#
- #<a href="##subst">Substitution</a>#
- #<a href="##gather_atoms">The "gather_atoms" tactic</a>#
- #<a href="##properties">Properties of opening and substitution</a>#
- #<a href="##lc">Local closure is preserved under substitution</a>#
- #<a href="##auto">Automation</a>#
- #<a href="##body">Properties of body_e</a># *)
Require Export Fsub.Fsub_LetSum_Definitions.
(* ********************************************************************** *)
(** * #<a name="fv"></a># Free variables *)
(** In this section, we define free variable functions. The functions
[fv_tt] and [fv_te] calculate the set of atoms used as free type
variables in a type or expression, respectively. The function
[fv_ee] calculates the set of atoms used as free expression
variables in an expression. Cases involving binders are
straightforward since bound variables are indices, not names, in
locally nameless representation. *)
Fixpoint fv_tt (T : typ) {struct T} : atoms :=
match T with
| typ_top => {}
| typ_bvar J => {}
| typ_fvar X => {{ X }}
| typ_arrow T1 T2 => (fv_tt T1) `union` (fv_tt T2)
| typ_all T1 T2 => (fv_tt T1) `union` (fv_tt T2)
| typ_sum T1 T2 => (fv_tt T1) `union` (fv_tt T2)
end.
Fixpoint fv_te (e : exp) {struct e} : atoms :=
match e with
| exp_bvar i => {}
| exp_fvar x => {}
| exp_abs V e1 => (fv_tt V) `union` (fv_te e1)
| exp_app e1 e2 => (fv_te e1) `union` (fv_te e2)
| exp_tabs V e1 => (fv_tt V) `union` (fv_te e1)
| exp_tapp e1 V => (fv_tt V) `union` (fv_te e1)
| exp_let e1 e2 => (fv_te e1) `union` (fv_te e2)
| exp_inl e1 => (fv_te e1)
| exp_inr e1 => (fv_te e1)
| exp_case e1 e2 e3 => (fv_te e1) `union` (fv_te e2) `union` (fv_te e3)
end.
Fixpoint fv_ee (e : exp) {struct e} : atoms :=
match e with
| exp_bvar i => {}
| exp_fvar x => {{ x }}
| exp_abs V e1 => (fv_ee e1)
| exp_app e1 e2 => (fv_ee e1) `union` (fv_ee e2)
| exp_tabs V e1 => (fv_ee e1)
| exp_tapp e1 V => (fv_ee e1)
| exp_let e1 e2 => (fv_ee e1) `union` (fv_ee e2)
| exp_inl e1 => (fv_ee e1)
| exp_inr e1 => (fv_ee e1)
| exp_case e1 e2 e3 => (fv_ee e1) `union` (fv_ee e2) `union` (fv_ee e3)
end.
(* ********************************************************************** *)
(** * #<a name="subst"></a># Substitution *)
(** In this section, we define substitution for expression and type
variables appearing in types, expressions, and environments.
Substitution differs from opening because opening replaces indices
whereas substitution replaces free variables. The definitions
below are relatively simple for two reasons.
- We are using locally nameless representation, where bound
variables are represented using indices. Thus, there is no
need to rename variables to avoid capture.
- The definitions below assume that the term being substituted
in, i.e., the second argument to each function, is locally
closed. Thus, there is no need to shift indices when passing
under a binder. *)
Fixpoint subst_tt (Z : atom) (U : typ) (T : typ) {struct T} : typ :=
match T with
| typ_top => typ_top
| typ_bvar J => typ_bvar J
| typ_fvar X => if X == Z then U else T
| typ_arrow T1 T2 => typ_arrow (subst_tt Z U T1) (subst_tt Z U T2)
| typ_all T1 T2 => typ_all (subst_tt Z U T1) (subst_tt Z U T2)
| typ_sum T1 T2 => typ_sum (subst_tt Z U T1) (subst_tt Z U T2)
end.
Fixpoint subst_te (Z : atom) (U : typ) (e : exp) {struct e} : exp :=
match e with
| exp_bvar i => exp_bvar i
| exp_fvar x => exp_fvar x
| exp_abs V e1 => exp_abs (subst_tt Z U V) (subst_te Z U e1)
| exp_app e1 e2 => exp_app (subst_te Z U e1) (subst_te Z U e2)
| exp_tabs V e1 => exp_tabs (subst_tt Z U V) (subst_te Z U e1)
| exp_tapp e1 V => exp_tapp (subst_te Z U e1) (subst_tt Z U V)
| exp_let e1 e2 => exp_let (subst_te Z U e1) (subst_te Z U e2)
| exp_inl e1 => exp_inl (subst_te Z U e1)
| exp_inr e1 => exp_inr (subst_te Z U e1)
| exp_case e1 e2 e3 => exp_case (subst_te Z U e1)
(subst_te Z U e2) (subst_te Z U e3)
end.
Fixpoint subst_ee (z : atom) (u : exp) (e : exp) {struct e} : exp :=
match e with
| exp_bvar i => exp_bvar i
| exp_fvar x => if x == z then u else e
| exp_abs V e1 => exp_abs V (subst_ee z u e1)
| exp_app e1 e2 => exp_app (subst_ee z u e1) (subst_ee z u e2)
| exp_tabs V e1 => exp_tabs V (subst_ee z u e1)
| exp_tapp e1 V => exp_tapp (subst_ee z u e1) V
| exp_let e1 e2 => exp_let (subst_ee z u e1) (subst_ee z u e2)
| exp_inl e1 => exp_inl (subst_ee z u e1)
| exp_inr e1 => exp_inr (subst_ee z u e1)
| exp_case e1 e2 e3 => exp_case (subst_ee z u e1)
(subst_ee z u e2) (subst_ee z u e3)
end.
Definition subst_tb (Z : atom) (P : typ) (b : binding) : binding :=
match b with
| bind_sub T => bind_sub (subst_tt Z P T)
| bind_typ T => bind_typ (subst_tt Z P T)
end.
(* ********************************************************************** *)
(** * #<a name="gather_atoms"></a># The "[gather_atoms]" tactic *)
(** The Metatheory and MetatheoryAtom libraries define a number of
tactics for working with cofinite quantification and for picking
fresh atoms. To specialize those tactics to this language, we
only need to redefine the [gather_atoms] tactic, which returns the
set of all atoms in the current context.
The definition of [gather_atoms] follows a pattern based on
repeated calls to [gather_atoms_with]. The one argument to this
tactic is a function that takes an object of some particular type
and returns a set of atoms that appear in that argument. It is
not necessary to understand exactly how [gather_atoms_with] works.
If we add a new inductive datatype, say for kinds, to our
language, then we would need to modify [gather_atoms]. On the
other hand, if we merely add a new type, say products, then there
is no need to modify [gather_atoms]; the required changes would be
made in [fv_tt]. *)
Ltac gather_atoms ::=
let A := gather_atoms_with (fun x : atoms => x) in
let B := gather_atoms_with (fun x : atom => singleton x) in
let C := gather_atoms_with (fun x : exp => fv_te x) in
let D := gather_atoms_with (fun x : exp => fv_ee x) in
let E := gather_atoms_with (fun x : typ => fv_tt x) in
let F := gather_atoms_with (fun x : env => dom x) in
constr:(A `union` B `union` C `union` D `union` E `union` F).
(* ********************************************************************** *)
(** * #<a name="properties"></a># Properties of opening and substitution *)
(** The following lemmas provide useful structural properties of
substitution and opening. While the exact statements are language
specific, we have found that similar properties are needed in a
wide range of languages.
Below, we indicate which lemmas depend on which other lemmas.
Since [te] functions depend on their [tt] counterparts, a similar
dependency can be found in the lemmas.
The lemmas are split into three sections, one each for the [tt],
[te], and [ee] functions. The most important lemmas are the
following:
- Substitution and opening commute with each other, e.g.,
[subst_tt_open_tt_var].
- Opening a term is equivalent to opening the term with a fresh
name and then substituting for that name, e.g.,
[subst_tt_intro].
We keep the sections as uniform in structure as possible. In
particular, we state explicitly strengthened induction hypotheses
even when there are more concise ways of proving the lemmas of
interest. *)
(* ********************************************************************** *)
(** ** Properties of type substitution in types *)
(** The next lemma is the strengthened induction hypothesis for the
lemma that follows, which states that opening a locally closed
term is the identity. This lemma is not otherwise independently
useful. *)
Lemma open_tt_rec_type_aux : forall T j V i U,
i <> j ->
open_tt_rec j V T = open_tt_rec i U (open_tt_rec j V T) ->
T = open_tt_rec i U T.
Proof with congruence || eauto.
induction T; intros j V i U Neq H; simpl in *; inversion H; f_equal...
Case "typ_bvar".
destruct (j === n)... destruct (i === n)...
Qed.
(** Opening a locally closed term is the identity. This lemma depends
on the immediately preceding lemma. *)
Lemma open_tt_rec_type : forall T U k,
type T ->
T = open_tt_rec k U T.
Proof with auto.
intros T U k Htyp. revert k.
induction Htyp; intros k; simpl; f_equal...
Case "typ_all".
unfold open_tt in *.
pick fresh X.
apply (open_tt_rec_type_aux T2 0 (typ_fvar X))...
Qed.
(** If a name is fresh for a term, then substituting for it is the
identity. *)
Lemma subst_tt_fresh : forall Z U T,
Z `notin` fv_tt T ->
T = subst_tt Z U T.
Proof with auto.
induction T; simpl; intro H; f_equal...
Case "typ_fvar".
destruct (a == Z)...
contradict H; fsetdec.
Qed.
(** Substitution commutes with opening under certain conditions. This
lemma depends on the fact that opening a locally closed term is
the identity. *)
Lemma subst_tt_open_tt_rec : forall T1 T2 X P k,
type P ->
subst_tt X P (open_tt_rec k T2 T1) =
open_tt_rec k (subst_tt X P T2) (subst_tt X P T1).
Proof with auto.
intros T1 T2 X P k WP. revert k.
induction T1; intros k; simpl; f_equal...
Case "typ_bvar".
destruct (k === n); subst...
Case "typ_fvar".
destruct (a == X); subst... apply open_tt_rec_type...
Qed.
(** The next lemma is a direct corollary of the immediately preceding
lemma---the index is specialized to zero. *)
Lemma subst_tt_open_tt : forall T1 T2 (X:atom) P,
type P ->
subst_tt X P (open_tt T1 T2) = open_tt (subst_tt X P T1) (subst_tt X P T2).
Proof with auto.
intros.
unfold open_tt.
apply subst_tt_open_tt_rec...
Qed.
(** The next lemma is a direct corollary of the immediately preceding
lemma---here, we're opening the term with a variable. In
practice, this lemma seems to be needed as a left-to-right rewrite
rule, when stated in its current form. *)
Lemma subst_tt_open_tt_var : forall (X Y:atom) P T,
Y <> X ->
type P ->
open_tt (subst_tt X P T) Y = subst_tt X P (open_tt T Y).
Proof with congruence || auto.
intros X Y P T Neq Wu.
unfold open_tt.
rewrite subst_tt_open_tt_rec...
simpl.
destruct (Y == X)...
Qed.
(** The next lemma states that opening a term is equivalent to first
opening the term with a fresh name and then substituting for the
name. This is actually the strengthened induction hypothesis for
the version we use in practice. *)
Lemma subst_tt_intro_rec : forall X T2 U k,
X `notin` fv_tt T2 ->
open_tt_rec k U T2 = subst_tt X U (open_tt_rec k (typ_fvar X) T2).
Proof with congruence || auto.
induction T2; intros U k Fr; simpl in *; f_equal...
Case "typ_bvar".
destruct (k === n)... simpl. destruct (X == X)...
Case "typ_fvar".
destruct (a == X)... contradict Fr; fsetdec.
Qed.
(** The next lemma is a direct corollary of the immediately preceding
lemma---the index is specialized to zero. *)
Lemma subst_tt_intro : forall X T2 U,
X `notin` fv_tt T2 ->
open_tt T2 U = subst_tt X U (open_tt T2 X).
Proof with auto.
intros.
unfold open_tt.
apply subst_tt_intro_rec...
Qed.
(* ********************************************************************** *)
(** ** Properties of type substitution in expressions *)
(** This section follows the structure of the previous section. The
one notable difference is that we require two auxiliary lemmas to
show that substituting a type in a locally-closed expression is
the identity. *)
Lemma open_te_rec_expr_aux : forall e j u i P ,
open_ee_rec j u e = open_te_rec i P (open_ee_rec j u e) ->
e = open_te_rec i P e.
Proof with congruence || eauto.
induction e; intros j u i P H; simpl in *; inversion H; f_equal...
Qed.
Lemma open_te_rec_type_aux : forall e j Q i P,
i <> j ->
open_te_rec j Q e = open_te_rec i P (open_te_rec j Q e) ->
e = open_te_rec i P e.
Proof.
induction e; intros j Q i P Neq Heq; simpl in *; inversion Heq;
f_equal; eauto using open_tt_rec_type_aux.
Qed.
Lemma open_te_rec_expr : forall e U k,
expr e ->
e = open_te_rec k U e.
Proof.
intros e U k WF. revert k.
induction WF; intros k; simpl; f_equal; auto using open_tt_rec_type;
try solve [
unfold open_ee in *;
pick fresh x;
eapply open_te_rec_expr_aux with (j := 0) (u := exp_fvar x);
auto
| unfold open_te in *;
pick fresh X;
eapply open_te_rec_type_aux with (j := 0) (Q := typ_fvar X);
auto
].
Qed.
Lemma subst_te_fresh : forall X U e,
X `notin` fv_te e ->
e = subst_te X U e.
Proof.
induction e; simpl; intros; f_equal; auto using subst_tt_fresh.
Qed.
Lemma subst_te_open_te_rec : forall e T X U k,
type U ->
subst_te X U (open_te_rec k T e) =
open_te_rec k (subst_tt X U T) (subst_te X U e).
Proof.
intros e T X U k WU. revert k.
induction e; intros k; simpl; f_equal; auto using subst_tt_open_tt_rec.
Qed.
Lemma subst_te_open_te : forall e T X U,
type U ->
subst_te X U (open_te e T) = open_te (subst_te X U e) (subst_tt X U T).
Proof with auto.
intros.
unfold open_te.
apply subst_te_open_te_rec...
Qed.
Lemma subst_te_open_te_var : forall (X Y:atom) U e,
Y <> X ->
type U ->
open_te (subst_te X U e) Y = subst_te X U (open_te e Y).
Proof with congruence || auto.
intros X Y U e Neq WU.
unfold open_te.
rewrite subst_te_open_te_rec...
simpl.
destruct (Y == X)...
Qed.
Lemma subst_te_intro_rec : forall X e U k,
X `notin` fv_te e ->
open_te_rec k U e = subst_te X U (open_te_rec k (typ_fvar X) e).
Proof.
induction e; intros U k Fr; simpl in *; f_equal;
auto using subst_tt_intro_rec.
Qed.
Lemma subst_te_intro : forall X e U,
X `notin` fv_te e ->
open_te e U = subst_te X U (open_te e X).
Proof with auto.
intros.
unfold open_te.
apply subst_te_intro_rec...
Qed.
(* ********************************************************************** *)
(** ** Properties of expression substitution in expressions *)
(** This section follows the structure of the previous two sections. *)
Lemma open_ee_rec_expr_aux : forall e j v u i,
i <> j ->
open_ee_rec j v e = open_ee_rec i u (open_ee_rec j v e) ->
e = open_ee_rec i u e.
Proof with congruence || eauto.
induction e; intros j v u i Neq H; simpl in *; inversion H; f_equal...
Case "exp_bvar".
destruct (j===n)... destruct (i===n)...
Qed.
Lemma open_ee_rec_type_aux : forall e j V u i,
open_te_rec j V e = open_ee_rec i u (open_te_rec j V e) ->
e = open_ee_rec i u e.
Proof.
induction e; intros j V u i H; simpl; inversion H; f_equal; eauto.
Qed.
Lemma open_ee_rec_expr : forall u e k,
expr e ->
e = open_ee_rec k u e.
Proof with auto.
intros u e k Hexpr. revert k.
induction Hexpr; intro k; simpl; f_equal; auto*;
try solve [
unfold open_ee in *;
pick fresh x;
eapply open_ee_rec_expr_aux with (j := 0) (v := exp_fvar x);
auto
| unfold open_te in *;
pick fresh X;
eapply open_ee_rec_type_aux with (j := 0) (V := typ_fvar X);
auto
].
Qed.
Lemma subst_ee_fresh : forall (x: atom) u e,
x `notin` fv_ee e ->
e = subst_ee x u e.
Proof with auto.
intros x u e; induction e; simpl; intro H; f_equal...
Case "exp_fvar".
destruct (a==x)...
contradict H; fsetdec.
Qed.
Lemma subst_ee_open_ee_rec : forall e1 e2 x u k,
expr u ->
subst_ee x u (open_ee_rec k e2 e1) =
open_ee_rec k (subst_ee x u e2) (subst_ee x u e1).
Proof with auto.
intros e1 e2 x u k WP. revert k.
induction e1; intros k; simpl; f_equal...
Case "exp_bvar".
destruct (k === n); subst...
Case "exp_fvar".
destruct (a == x); subst... apply open_ee_rec_expr...
Qed.
Lemma subst_ee_open_ee : forall e1 e2 x u,
expr u ->
subst_ee x u (open_ee e1 e2) =
open_ee (subst_ee x u e1) (subst_ee x u e2).
Proof with auto.
intros.
unfold open_ee.
apply subst_ee_open_ee_rec...
Qed.
Lemma subst_ee_open_ee_var : forall (x y:atom) u e,
y <> x ->
expr u ->
open_ee (subst_ee x u e) y = subst_ee x u (open_ee e y).
Proof with congruence || auto.
intros x y u e Neq Wu.
unfold open_ee.
rewrite subst_ee_open_ee_rec...
simpl.
destruct (y == x)...
Qed.
Lemma subst_te_open_ee_rec : forall e1 e2 Z P k,
subst_te Z P (open_ee_rec k e2 e1) =
open_ee_rec k (subst_te Z P e2) (subst_te Z P e1).
Proof with auto.
induction e1; intros e2 Z P k; simpl; f_equal...
Case "exp_bvar".
destruct (k === n)...
Qed.
Lemma subst_te_open_ee : forall e1 e2 Z P,
subst_te Z P (open_ee e1 e2) = open_ee (subst_te Z P e1) (subst_te Z P e2).
Proof with auto.
intros.
unfold open_ee.
apply subst_te_open_ee_rec...
Qed.
Lemma subst_te_open_ee_var : forall Z (x:atom) P e,
open_ee (subst_te Z P e) x = subst_te Z P (open_ee e x).
Proof with auto.
intros.
rewrite subst_te_open_ee...
Qed.
Lemma subst_ee_open_te_rec : forall e P z u k,
expr u ->
subst_ee z u (open_te_rec k P e) = open_te_rec k P (subst_ee z u e).
Proof with auto.
induction e; intros P z u k H; simpl; f_equal...
Case "exp_fvar".
destruct (a == z)... apply open_te_rec_expr...
Qed.
Lemma subst_ee_open_te : forall e P z u,
expr u ->
subst_ee z u (open_te e P) = open_te (subst_ee z u e) P.
Proof with auto.
intros.
unfold open_te.
apply subst_ee_open_te_rec...
Qed.
Lemma subst_ee_open_te_var : forall z (X:atom) u e,
expr u ->
open_te (subst_ee z u e) X = subst_ee z u (open_te e X).
Proof with auto.
intros z X u e H.
rewrite subst_ee_open_te...
Qed.
Lemma subst_ee_intro_rec : forall x e u k,
x `notin` fv_ee e ->
open_ee_rec k u e = subst_ee x u (open_ee_rec k (exp_fvar x) e).
Proof with congruence || auto.
induction e; intros u k Fr; simpl in *; f_equal...
Case "exp_bvar".
destruct (k === n)... simpl. destruct (x == x)...
Case "exp_fvar".
destruct (a == x)... contradict Fr; fsetdec.
Qed.
Lemma subst_ee_intro : forall x e u,
x `notin` fv_ee e ->
open_ee e u = subst_ee x u (open_ee e x).
Proof with auto.
intros.
unfold open_ee.
apply subst_ee_intro_rec...
Qed.
(* *********************************************************************** *)
(** * #<a name="lc"></a># Local closure is preserved under substitution *)
(** While these lemmas may be considered properties of substitution, we
separate them out due to the lemmas that they depend on. *)
(** The following lemma depends on [subst_tt_open_tt_var]. *)
Lemma subst_tt_type : forall Z P T,
type T ->
type P ->
type (subst_tt Z P T).
Proof with auto.
intros Z P T HT HP.
induction HT; simpl...
Case "type_fvar".
destruct (X == Z)...
Case "type_all".
pick fresh Y and apply type_all...
rewrite subst_tt_open_tt_var...
Qed.
(** The following lemma depends on [subst_tt_type],
[subst_te_open_ee_var], and [sbust_te_open_te_var]. *)
Lemma subst_te_expr : forall Z P e,
expr e ->
type P ->
expr (subst_te Z P e).
Proof with eauto using subst_tt_type.
intros Z P e He Hp.
induction He; simpl; auto using subst_tt_type;
try solve [
econstructor;
try instantiate (1 := L `union` singleton Z);
intros;
try rewrite subst_te_open_ee_var;
try rewrite subst_te_open_te_var;
instantiate;
eauto using subst_tt_type
].
Qed.
(** The following lemma depends on [subst_ee_open_ee_var] and
[subst_ee_open_te_var]. *)
Lemma subst_ee_expr : forall z e1 e2,
expr e1 ->
expr e2 ->
expr (subst_ee z e2 e1).
Proof with auto.
intros z e1 e2 He1 He2.
induction He1; simpl; auto;
try solve [
econstructor;
try instantiate (1 := L `union` singleton z);
intros;
try rewrite subst_ee_open_ee_var;
try rewrite subst_ee_open_te_var;
instantiate;
auto
].
Case "expr_var".
destruct (x == z)...
Qed.
(* *********************************************************************** *)
(** * #<a name="body"></a># Properties of [body_e] *)
(** The two kinds of facts we need about [body_e] are the following:
- How to use it to derive that terms are locally closed.
- How to derive it from the facts that terms are locally closed.
Since we use it only in the context of [exp_let] and [exp_sum]
(see the definition of reduction), those two constructors are the
only ones we consider below. *)
Lemma expr_let_from_body : forall e1 e2,
expr e1 ->
body_e e2 ->
expr (exp_let e1 e2).
Proof.
intros e1 e2 H [J1 J2].
pick fresh y and apply expr_let; auto.
Qed.
Lemma body_from_expr_let : forall e1 e2,
expr (exp_let e1 e2) ->
body_e e2.
Proof.
intros e1 e2 H.
unfold body_e.
inversion H; eauto.
Qed.
Lemma expr_case_from_body : forall e1 e2 e3,
expr e1 ->
body_e e2 ->
body_e e3 ->
expr (exp_case e1 e2 e3).
Proof.
intros e1 e2 e3 H [J1 J2] [K1 K2].
pick fresh y and apply expr_case; auto.
Qed.
Lemma body_inl_from_expr_case : forall e1 e2 e3,
expr (exp_case e1 e2 e3) ->
body_e e2.
Proof.
intros e1 e2 e3 H.
unfold body_e.
inversion H; eauto.
Qed.
Lemma body_inr_from_expr_case : forall e1 e2 e3,
expr (exp_case e1 e2 e3) ->
body_e e3.
Proof.
intros e1 e2 e3 H.
unfold body_e.
inversion H; eauto.
Qed.
Lemma open_ee_body_e : forall e1 e2,
body_e e1 -> expr e2 -> expr (open_ee e1 e2).
Proof.
intros e1 e2 [L H] J.
pick fresh x.
rewrite (subst_ee_intro x); auto using subst_ee_expr.
Qed.
(* *********************************************************************** *)
(** * #<a name="auto"></a># Automation *)
(** We add as hints the fact that local closure is preserved under
substitution. This is part of our strategy for automatically
discharging local-closure proof obligations. *)
#[export] Hint Resolve subst_tt_type subst_te_expr subst_ee_expr : core.
(** We also add as hints the lemmas concerning [body_e]. *)
#[export] Hint Resolve expr_let_from_body body_from_expr_let : core.
#[export] Hint Resolve expr_case_from_body : core.
#[export] Hint Resolve body_inl_from_expr_case body_inr_from_expr_case : core.
#[export] Hint Resolve open_ee_body_e : core.
(** When reasoning about the [binds] relation and [map], we
occasionally encounter situations where the binding is
over-simplified. The following hint undoes that simplification,
thus enabling [Hint]s from the MetatheoryEnv library. *)
#[export] Hint Extern 1 (binds _ (?F (subst_tt ?X ?U ?T)) _) =>
unsimpl (subst_tb X U (F T)) : core.