-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathinfer.py
executable file
·197 lines (165 loc) · 8.36 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# -*- coding: utf-8 -*-
# @Time : 2021/11/18 22:40
# @Author : zhao pengfei
# @Email : [email protected]
# @File : run_mae_vis.py
# --------------------------------------------------------
# Based on BEiT, timm, DINO and DeiT code bases
# https://github.com/microsoft/unilm/tree/master/beit
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
# https://github.com/facebookresearch/deit
# https://github.com/facebookresearch/dino
# --------------------------------------------------------'
import argparse
import os
import os.path as osp
import pickle
import time
from glob import glob
import torch
import torch.backends.cudnn as cudnn
import torchvision
from einops import rearrange
from timm.models import create_model
from torch.utils.data import DataLoader
from tqdm import tqdm
import modeling
from datasets import build_fixed_validation_dataset
from utils import lab2rgb, psnr, rgb2lab, seed_worker
def get_args():
parser = argparse.ArgumentParser('Infer Colorization', add_help=False)
# For evaluation
parser.add_argument('--model_path', type=str, help='checkpoint path of model', default='checkpoint.pth')
parser.add_argument('--model_args_path', type=str, help='args.pkl path of model', default='')
parser.add_argument('--val_data_path', default='data/val/images', type=str, help='validation dataset path')
parser.add_argument('--val_hint_dir', type=str, help='hint directory for fixed validation', default='data/hint')
parser.add_argument('--pred_dir', type=str, default=None, help='save all prediction here')
parser.add_argument('--gray_file_list_txt', type=str, default='', help='use gray file list to exclude them')
parser.add_argument('--return_name', action='store_true', help='return name for saving (True for test)')
parser.add_argument('--no_return_name', action='store_false', dest='return_name', help='')
parser.set_defaults(return_name=True)
# Dataset parameters
parser.add_argument('--input_size', default=224, type=int, help='images input size for backbone')
parser.add_argument('--batch_size', default=32, type=int)
parser.add_argument('--num_workers', default=8, type=int)
parser.add_argument('--pin_mem', action='store_true', help='Pin CPU memory in DataLoader')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem', help='')
parser.set_defaults(pin_mem=True)
# Model parameters
parser.add_argument('--model', default='icolorit_base_4ch_patch16_224', type=str, help='Name of model to inference')
parser.add_argument('--use_rpb', action='store_true', help='relative positional bias')
parser.add_argument('--no_use_rpb', action='store_false', dest='use_rpb')
parser.set_defaults(use_rpb=True)
parser.add_argument('--head_mode', type=str, default='cnn', help='head_mode', choices=['linear', 'cnn', 'locattn'])
parser.add_argument('--drop_path', type=float, default=0.0, help='Drop path rate')
parser.add_argument('--mask_cent', action='store_true', help='mask_cent')
parser.add_argument('--device', default='cuda', help='device to use for training / testing')
# Hint generator parameter
parser.add_argument('--hint_size', default=2, type=int, help='size of the hint region is given by (h, h)')
parser.add_argument('--avg_hint', action='store_true', help='avg hint')
parser.add_argument('--no_avg_hint', action='store_false', dest='avg_hint')
parser.set_defaults(avg_hint=True)
parser.add_argument('--val_hint_list', default=[0, 1, 2, 5, 10, 20, 50, 100, 200], nargs='+')
args = parser.parse_args()
if osp.isdir(args.model_path):
all_checkpoints = glob(osp.join(args.model_path, 'checkpoint-*.pth'))
latest_ckpt = -1
for ckpt in all_checkpoints:
t = ckpt.split('-')[-1].split('.')[0]
if t.isdigit():
latest_ckpt = max(int(t), latest_ckpt)
if latest_ckpt >= 0:
args.model_path = os.path.join(args.model_path, f'checkpoint-{latest_ckpt}.pth')
print(f'Load checkpoint: {args.model_path}')
if args.model_args_path:
with open(args.model_args_path, 'rb') as f:
train_args = vars(pickle.load(f))
model_keys = ['model', 'use_rpb', 'head_mode', 'drop_path', 'mask_cent', 'avg_hint']
for key in model_keys:
if key in train_args.keys():
setattr(args, key, train_args[key])
else:
print(f'{key} is not in {args.model_args_path}. Please check the args.pkl')
time.sleep(3)
print(f'Load args: {args.model_args_path}')
args.val_hint_list = [int(h) for h in args.val_hint_list]
for count in args.val_hint_list:
os.makedirs(osp.join(args.pred_dir, f'h{args.hint_size}-n{count}'), exist_ok=True)
return args
def get_model(args):
print(f"Creating model: {args.model}")
model = create_model(
args.model,
pretrained=False,
drop_path_rate=args.drop_path,
drop_block_rate=None,
use_rpb=args.use_rpb,
avg_hint=args.avg_hint,
head_mode=args.head_mode,
mask_cent=args.mask_cent,
)
return model
def main(args):
device = torch.device(args.device)
cudnn.benchmark = True
model = get_model(args)
patch_size = model.patch_embed.patch_size
print("Patch size = %s" % str(patch_size))
args.window_size = (args.input_size // patch_size[0], args.input_size // patch_size[1])
args.patch_size = patch_size
model.to(device)
checkpoint = torch.load(args.model_path, map_location='cpu')
model.load_state_dict(checkpoint['model'])
model.eval()
psnr_sum = dict(zip(args.val_hint_list, [0.] * len(args.val_hint_list)))
total_shown = 0
args.hint_dirs = [osp.join(args.val_hint_dir, f'h{args.hint_size}-n{i}') for i in args.val_hint_list]
dataset_val = build_fixed_validation_dataset(args)
data_loader_val = DataLoader(
dataset_val,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,
worker_init_fn=seed_worker,
shuffle=False,
)
with torch.no_grad():
pbar = tqdm(desc=f'Evaluate', ncols=100, total=len(data_loader_val) * len(args.val_hint_list))
for step, batch in enumerate(data_loader_val):
(images, bool_hints), targets, names = batch
B, _, H, W = images.shape
h, w = H // patch_size[0], W // patch_size[1]
# batch preparation
images = images.to(device, non_blocking=True)
images_lab = rgb2lab(images)
images_patch = rearrange(images_lab, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)',
p1=patch_size[0], p2=patch_size[1])
labels = rearrange(images_patch, 'b n (p1 p2 c) -> b n (p1 p2) c', p1=patch_size[0], p2=patch_size[1])
for i, count in enumerate(args.val_hint_list):
bool_hint = bool_hints[:, i]
bool_hint = bool_hint.to(device, non_blocking=True).flatten(1).to(torch.bool)
with torch.cuda.amp.autocast():
outputs = model(images_lab.clone(), bool_hint.clone())
outputs = rearrange(outputs, 'b n (p1 p2 c) -> b n (p1 p2) c', p1=patch_size[0], p2=patch_size[1])
pred_imgs_lab = torch.cat((labels[:, :, :, 0].unsqueeze(3), outputs), dim=3)
pred_imgs_lab = rearrange(pred_imgs_lab, 'b (h w) (p1 p2) c -> b c (h p1) (w p2)',
h=h, w=w, p1=patch_size[0], p2=patch_size[1])
pred_imgs = lab2rgb(pred_imgs_lab)
psnr_sum[count] += psnr(images, pred_imgs).item() * B
if args.pred_dir is not None:
img_save_dir = osp.join(args.pred_dir, f'h{args.hint_size}-n{count}')
for name, pred_img in zip(names, pred_imgs):
torchvision.utils.save_image(pred_img.unsqueeze(0), osp.join(
img_save_dir, osp.splitext(name)[0] + '.png'))
pbar.update()
total_shown += B
pbar.set_postfix({'psnr@10': psnr_sum.get(10) / total_shown})
pbar.close()
print(f'Total shown: {total_shown}')
print(f'PSNR {10}: {psnr_sum[10]/total_shown}')
if __name__ == '__main__':
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
args = get_args()
main(args)